

Defense Threat Reduction Agency

8725 John J. Kingman Road, MS-6201

Fort Belvoir, VA 22060-6201
T

E
C

H
N

IC
A

L
 R

E
P

O
R

T

DTRA-TR-15-28

Combating Weapons of Mass Destruction:

Models, Complexity, and Algorithms in

Complex Dynamic and Evolving Networks

Distribution Statement A. Approved for public release; distribution is
unlimited.

November 2015

HDTRA1-09-1-0061

 Dr. My Thai

 Prepared by:
 University of Florida
 1 University of Florida
 Gainesville, FL 32611

 DESTRUCTION NOTICE:

 Destroy this report when it is no longer needed.

 Do not return to sender.

 PLEASE NOTIFY THE DEFENSE THREAT REDUCTION

AGENCY, ATTN: DTRIAC/ J9STT, 8725 JOHN J. KINGMAN ROAD,

MS-6201, FT BELVOIR, VA 22060-6201, IF YOUR ADDRESS

IS INCORRECT, IF YOU WISH THAT IT BE DELETED FROM THE

DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO

LONGER EMPLOYED BY YOUR ORGANIZATION.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

CONVERSION TABLE
Conversion Factors for U.S. Customary to metric (SI) units of measurement.

MULTIPLY BY TO GET

 TO GET BY DIVIDE

angstrom

atmosphere (normal)

bar

barn

British thermal unit (thermochemical)

calorie (thermochemical)

cal (thermochemical/cm)

curie

degree (angle)

degree Fahrenheit

electron volt

erg

erg/second

foot

foot-pound-force

gallon (U.S. liquid)

inch

jerk

joule/kilogram (J/kg) radiation dose

 absorbed

kilotons

kip (1000 lbf)

kip/inch (ksi)

ktap

micron

mil

mile (international)

ounce

pound-force (lbs avoirdupois)

pound-force inch

pound-force/inch

pound-force/foot

pound-force/inch (psi)

pound-mass (lbm avoirdupois)

pound-mass-foot (moment of inertia)

pound-mass/foot

rad (radiation dose absorbed)

roentgen

shake

slug

torr (mm Hg, 0 C)

 *The bacquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.

**The Gray (GY) is the SI unit of absorbed radiation.

1.000 000 x E -10

1.013 25 x E +2

1.000 000 x E +2

1.000 000 x E -28

1.054 350 x E +3

4.184 000

4.184 000 x E -2

3.700 000 x E +1

1.745 329 x E -2

t = (t f + 459.67)/1.8

1.602 19 x E -19

1.000 000 x E -7

1.000 000 x E -7

3.048 000 x E -1

1.355 818

3.785 412 x E -3

2.540 000 x E -2

1.000 000 x E +9

1.000 000

4.183

4.448 222 x E +3

6.894 757 x E +3

1.000 000 x E +2

1.000 000 x E -6

2.540 000 x E -5

1.609 344 x E +3

2.834 952 x E -2

4.448 222

1.129 848 x E -1

1.751 268 x E +2

4.788 026 x E -2

6.894 757

4.535 924 x E -1

4.214 011 x E -2

1.601 846 x E +1

1.000 000 x E -2

2.579 760 x E -4

1.000 000 x E -8

1.459 390 x E +1

1.333 22 x E -1

meters (m)

kilo pascal (kPa)

kilo pascal (kPa)

meter (m)

joule (J)

joule (J)

mega joule/m (MJ/m)

*giga bacquerel (GBq)

radian (rad)

degree kelvin (K)

joule (J)

joule (J)

watt (W)

meter (m)

joule (J)

meter (m)

meter (m)

joule (J)

Gray (Gy)

terajoules

newton (N)

kilo pascal (kPa)

newton-second/m (N-s/m)

meter (m)

meter (m)

meter (m)

kilogram (kg)

newton (N)

newton-meter (N-m)

newton/meter (N/m)

kilo pascal (kPa)

kilo pascal (kPa)

kilogram (kg)

kilogram-meter (kg-m)

kilogram-meter (kg/m)

**Gray (Gy)

coulomb/kilogram (C/kg)

second (s)

kilogram (kg)

kilo pascal (kPa)

FINAL REPORT: 07/16/2009 - 08/31/2014

Grant Number: HDTRA1-09-1-0061
Project Title: Combating Weapons of Mass Destruction: Models, Complexity, and

Algorithms in Complex Dynamic and Evolving Networks

Dr. My T. Thai (Principal Investigator)
Associate Professor

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611
Phone: (352) 328-9085

Fax: (352) 392-1220
E-mail: mythai@cise.ufl.edu

Contents

1 Objectives and Relevance 1

2 Major Accomplishments 2
2.1 Critical Node Detection . 2

2.1.1 Detailed Results for Static Networks . 3
2.1.2 Detailed Results for Dynamic and Evolving Networks 7
2.1.3 Detailed Results for Interdependent Networks 11
2.1.4 Detailed Results for Cascading Failures 15

2.2 Network Structural Interdependency and Vulnerability Assessment 20
2.2.1 Detailed Results for Identifying Community Structures 22
2.2.2 Detailed Results for Adaptively Updating Community Structures 24
2.2.3 Detailed Results for Assessing Network Structure Vulnerability 25

2.3 Impact Analysis of the Power-Law Degree Distribution on Network Vulnerability . 26
2.3.1 Detailed Results for Vulnerability Analysis 28
2.3.2 Detailed Results for Hardness Complexity 30
2.3.3 Detailed Results for Approximation Algorithms 31

3 Training and Professional Development 33
3.1 Personnel Supported . 33
3.2 Training . 34
3.3 Professional Development . 34

4 Results Dissemination 35

5 Honors/Awards 35

6 Dataset 36
6.1 Critical Node Detections . 36
6.2 Network Structural Interdependency and Vulnerability Assessment 37

7 Publications 37
Appendix 42
A. Community Structure and Its Application in Dynamic Complex Networks - dissertation by Nam
P. Nguyen (185 pages).
B. Complex Networks under Attacks: Vulnerability assessment and Optimization - dissertation by
Thang N. Dinh (149 pages).
C. The Exploitation of Power-Law Networks: Robustness, Optimization and its Impact on Com-
munication Networks and Social Behaviors - dissertation by Yilin Shen (118 pages).
D. Cascading Propagation and Optimization in Networks - dissertation by Dung T. Nguyen (103
pages).

1 Objectives and Relevance
The goal of this project is to address novel quantitative challenges arising in network vulnerability
assessment and defense measurement in the face of cascading failures and large-scale attacks such
as WMD. More specifically, we aim to accomplish the following three primary goals:

1. Critical Node Detection. We investigate the network vulnerability under multiple attacks with
different level of disruptions. That is, we aim to identify the most critical subsets of elements
(such as nodes and/or edges) whose simultaneous removal maximizes the disruptive effect on
the network in term of connectivity. The attacks considered in this study target on both nodes
and edges simultaneously. For the networks, we first study static, then dynamic, and modeled
them into evolving networks, and finally considered a system consisting of two interdependent
networks. The study helps us reveal the most critical location that we need to protect (defense
strategies) or attack to break down adversarial networks (attack strategies).

2. Network Structural Interdependency and Vulnerability Assessment. Since understanding
the interdependency of network structures can reveal the behavior of vulnerability propagation,
we propose to investigate the network interdependencies based on their underlying topology
focused on the inter- and intra-dependencies between network components and develop a the-
oretical framework characterizing these interdependences, which has not been provided in the
literature. To achieve these goals, we introduce several new models based on an observation that
most complex networks exhibit a network modular property, that is nodes within a network mod-
ule are more densely connected among each other than with the rest of the network, sometimes
referred as community structure. A network module may represent a functional group, a com-
ponent, or an entity within the network system and the correlation among modules can model
and describe the interdependency between network components. Along this direction, we aim
to investigate the strength of community structures, how to break them, and how community
structures evolved in order to predict responses of network components to WMD attacks.

3. Impact Analysis of the Power-Law Degree Distribution on Network Vulnerability. As many
real-word complex networks such as the Internet, WWW, communication networks, and social
networks, have the degrees that follow the power-law distribution, we investigate how this spe-
cial property will impact on the network vulnerability and its complexity. In particular, we aim
to (i) provide a theoretical framework, analyzing the vulnerability of power-law networks under
different attacks, (ii) provide near-optimal algorithms to solve many NP-complete problems on
power-law networks, and (iii) investigate the hardness complexity of many optimization prob-
lems on power-law networks.

Relevance. The study offers the first mathematical study on network vulnerability and defense
considering the most realistic scenarios where attacks are dynamic and spreading, and failures are
cascaded across several interdependent networks within a complex system. Therefore, it lays a
foundation in understanding the fundamental properties that contribute to the network robustness
under WMD attacks, and thus, advances the state-of-the-art in modern complex network theory
and multi-stage optimization algorithms.

Some of their applications in the area of defense are as follows:

1

• The applications include the protection of moving military units in which the dynamic network
of moving vehicles is considered. The proposal helps to design a more robust strategic net-
work in a WMD stressor environment. This also indicates that the proposed problems can be
used to study the planning paths of unmanned vehicles, with wireless units, in order to ensure
communication between them. It is also applicable in ad-hoc networks.

• Other applications include emergency responses in the event of failures in transportation net-
works. The study will help plan the allocation of resources during the evacuation, re-establish
critical routes in the aftermath of a disaster, and predict the network responses.

• The study also finds applications in critical infrastructures such as communication networks,
wireless networks, transportation networks, and power systems.

The findings also have major impact in the field of networks science and complex networks as
many problems studied are on the complex networks and social networks. In addition, the solutions
obtained from this project can be used in different field such as vaccination and virus contamina-
tion. The results obtained are very basic and have the solid impact on the base of knowledge. For
example, the study of network structure is very important to understand any behavior on top of
that networks. The study of hardness complexity is important to design algorithms for the prob-
lems. The project crosses several research areas such as approximation algorithm, optimization,
and control theory, thus it has a profound impact on these fields as well.

2 Major Accomplishments
We have obtained the following findings, corresponding to the above three primary goals.

2.1 Critical Node Detection
We have modeled two main optimization problems as follows:

Definition 1 β-Vertex (Edge) Disruptor (β-VD (ED)): Given a graph G = (V,E) and 0 ≤ β ≤ 1,
find a subset of vertices (edges) S with minimum size so that the pairwise connectivity of G[V \ S]
(G = (V,E \ S)) is at most

(
β
n2

)
Definition 2 k-CND (k-CED): Given a graph G = (V,E) and a positive integer k ≤ |V |, find a
subset S ⊆ V (S ⊆ E) so as to minimize the pairwise connectivity of G[V \ S] (G = (V,E \ S))

Relevance. We assess network vulnerability from two different perspectives, namely attack and
defense. For example, from an attack point of view, identifying and destroying these critical nodes
simultaneously will help seek a maximum destruction in terms of maximum network fragmenta-
tion. For example, we can apply this approach to destroy, i.e. arrest, a small number of individuals
in an adversarial social network (e.g. terrorist network) in order to maximally disrupt the networks
ability to deploy a coordinated attack. From a defensive view, we try to identify the nodes and edges
that are considered vital and need to be secured. In a broad sense, we try to minimize the damages
in case of a defense or maximize damages in case of an attack, with the available resources. The
proposed methods also allow us to accommodate dynamic and evolving networks, which are much

2

more crucial because dynamics are the key factors that need to be explicitly considered in military
settings.

The β-VD (ED) allows us to break the networks to a required extent with a minimum cost
while the k-CND tries to maximize the damage with a given cost. Furthermore, different value of
β allows us to disrupt the network at different levels. The metric pairwise connectivity provides a
global damage view to the networks, instead of a local measurement, an existing metrics used in
the literature.

Summary of Findings

1. Provided the best approximation algorithm, O(
√

log n) ratio for β-VD and β-ED.

2. Provided new mathematical programming approach to find an exact solutions for NP-complete
problems with an instance up to a thousand nodes. Current available method (in the literature)
is only able to solve upto 100 nodes.

3. Proved the spectral bound for vulnerability assessment in large-scale networks. The result helps
us to determine the minimum cost needed to attack (or protect) a given network to reduce the
network connectivity under some threshold

4. Provided approximation algorithms in the case of dynamic networks, interdependent networks,
in the presence of cascading failures

5. Provided effective defense strategies to spreading and dynamic attacks.

6. Provided models and solutions to strengthen the network modules so that they will be less sen-
sitive to changes, thereby improving network robustness with minimum additional costs.

2.1.1 Detailed Results for Static Networks

First of all, we investigated the above 2 problems where input G is static. We can see G as a
network snapshot at time t, and thus it is static. This study lays a foundation to solve the problems
in dynamic and evolving networks as shown later.

We have shown that k-CND and β-ED are NP-complete whereas β-VD is MaxSNP-hard. Fur-
thermore, we proved that k-CND is still NP-complete in Unit Disk Graphs and Power-Law graphs.
We have proposed two pseudo-approximation algorithm for β-ED and β-VD with the ratio of
O(log1.5 n) and O(log n log log n) respectively where n is the size of an input. Via experimental
results, we have also shown that the new model is a better way to assess the network vulnerability.
More details can be found in papers [47, 52, 54]. We have included here the pseudo-codes as
shown in Algorithm β-edge Disruptor and β-vertex Disruptor.

Exact Solutions and Lower Bound. We provided the first exaction solution via mathematical
programming for β-vertex disruptor, raising the size of the largest instance solved from a few dozen
to several hundreds. This technique is very basic and can be applied for several different problems,
not only to the β-vertex disruptor. This finding goes beyond what we have proposed. The result is
published in [50].

3

Algorithm β-edge Disruptor

Input: Uniform directed graph G = (V,E) and 0 ≤ β < β′ < 1

Output: A β′-edge disruptor of G.

/* Construct the decomposition tree */

1. c← 1−
√

β
β′

.

2. T (VT , ET)← ({t0}, φ), V (t0)← V (G), l(t0) = 1

3. while ∃ unvisited ti with |V (ti)| ≥ 2 do

4. Mark ti visited, create new child nodes ti1, ti2 of ti.

5. l(ti1), l(ti2)← l(ti) + 1.

6. VT ← VT ∪ {ti1, ti2}
7. ET ← ET ∪ {(ti, ti1), (ti, ti2)}
8. Separate G[V (ti)] into two using directed c-balanced cut.

9. Assign two obtained partitions to V (ti1), V (ti2)

10. cost(ti)← The cost of the balanced cut

11. end while

/* Find the minimum cost G-partitionable */

12. for ti ∈ T in reversed BFS order from root node t0 do

13. for p← 0 to β′
(
n
2

)
14. if P(G[V (ti)]) ≤ p then

15. cost(ti, p)← 0

16. else

17. cost(ti, p)← min{cost(ti1, p1)+

cost(ti2, p2) + cost(ti) | p1 + p2 = p}
18. Find F with P(F) = min{cost(t0, p) | p ≤ β′

(
n
2

)
}

19. Return union of cuts used at A(F) during tree construction

4

Algorithm β′-vertex disruptor

Input: Directed graph G = (V,E) and fixed 0 < β′ < 1.

Output: A β′-vertex disruptor of G

1. G′(V ′, E′)← (φ, φ)

2. ∀v ∈ V : V ′ ← V ′ ∪ {v+, v−}
3. ∀v ∈ V : E ′ ← E ′ ∪ {(v− → v+)}, c(v−, v+)← 1

4. ∀(u→ v) ∈ E : E ′ ← E ′ ∪ {u+ → v−}, c(u+, v−)←∞
5. β ← 0, β ← 1

6. DV ← V (G)

7. while (β − β > ε) do

8. β̃ ← bβ + β

2ε
c × ε

9. Find De ⊂ E ′ to separate G′ into strongly connected

components of sizes at most β̃|V ′| 10. Dv ← {v ∈ V (G) | (v+ → v−) ∈ De}
11. if P(G[V \Dv]) ≤ β

(
n
2

)
then

12. β = β̃

13. Remove nodes from Dv as long as P(G[V \Dv]) ≤ β
(
n
2

)
14. if |DV | > |Dv| then DV = Dv

15. else

16. β = β̃

18.end while

19. Return DV

5

We have also proven the spectral bound for link vulnerability assessment in large-scale net-
works. The result helps us to determine the minimum cost needed to attack (or protect) a given
network to reduce the network connectivity under some threshold. Two major findings along this
direction are: (1) We introduced a new spectral lower-bound for the β-edge disruptor problem in
form of an eigenvalue optimization problems. At the same time, we enriched the literature on
lower-bound techniques. (2) We presented two efficient methods to compute the proposed lower-
bound: a) the Lagrange multiplier method and b) the dynamic programming algorithm. Moreover,
the Lagrange multiplier method can derive the lower-bound with only a small number of smallest
eigenvalues. This is important for large networks where computing the whole network spectrum is
both time and memory consuming. The result has been published in [9, 29].

Generalization. We next generalized the problems to the case that both edges and vertices are
being attacked at the same time as in the following model.

β-disruptor. A β-disruptor is a pair of subsets

Dβ = (Vβ ⊆ V,Eβ ⊆ E)

that removal from G will make the pairwise connectivity in the residual graph
G′ = (V \ Vβ, E \ (Eβ ∪ Vβ × Vβ)) to be at most β

(
n
2

)
. The β-disruptor problem asks for a β-

disruptor with the minimum total cost

c(Dβ) =
∑
u∈Vβ

c(u) +
∑
e∈Eβ

c(e).

We further notice that with the same attack cost, if we are allowed to attack both edges and
nodes, instead of either edges or nodes separately, a network can be destroyed to a larger extent.

(a) Node attack (b) Link attack (c) Link-node attack

Figure 1: Minimum cost solutions to reduce 50% of the connectivity assuming links have cost 2 and nodes
have cost 3 a. node only & b. link only c. joint nodes & links. The minimum cost is 6 if attacking only
nodes or only links, and is 5 if both links and nodes are targeted. Thus, it is insufficient to study node and
link attacks separately.

Fig. 1 also illustrates a fundamental shortcoming of existing work: the ability to assess network
vulnerability under joint node and link attacks. The three sub-figures show the minimum cost
attack strategies to reduce β = 50% pairwise connectivity, assuming each link has cost 2 and each

6

node has cost 3. While the minimum costs for both node-attack (Fig. 1a) and link-attack (Fig. 1b)
are 6, the minimum cost for node-link attacks (node 3 and link (6, 7)) (Fig. 1c) is only 5. Thus,
it is insufficient to assess link vulnerability and node vulnerability separately when both links and
nodes in the network can be targeted. To make matters worse, assume node 3 and link (6, 7) have
the same cost ε > 0, the minimum costs for node, link, and node-link attacks will be 3 + ε, 4 + ε,
and 2ε, respectively. As the ratios (3+ε)/(2ε) and (4+ε)/(2ε) go unbounded, the existing methods
can seriously misjudge the network vulnerability.

To address this shortcoming, we studied the effect of joint node and link attacks in term of con-
nectivity. We introduced a new problem, called β-disruptor, that finds a minimum cost set of nodes
and links whose removal degrades the pairwise connectivity to a great extent (a fraction β). The
β-disruptor problem aims to provide a more comprehensive assessment on network vulnerability.
It generalizes both the β-vertex disruptor and the β-edge disruptor problems. Along this direction,
we proposed an O(

√
log n)-pseudo approximation algorithm for this β-disruptor problem. The

main challenge is to address a right cut on directed graphs as the sparsest cut is no longer suitable.
The results is shown in [7]. This result also improves our previous results of O(log1.5 n) for β-ED
and O(log n log log n) for β-VD.

Variants. We further observed that even before the network beings fragmenting into pieces, its
Quality of Service (QoS) may already drop to an intolerant low level, and the network can no
longer provide services. To this end, we presented a novel QoS-aware vulnerability assessment
framework, called QoS-Critical Vertices (QoSCV) / QoS-Critical Edges(QoSCE) as follows.

Definition 3 QoS-Critical Vertices (QoSCV) / QoS-Critical Edges(QoSCE): Given a directed graph
G(V,E, s, t) with m-dim edge weight vector (u, v) ∈ E: (w1(u, v), w2(u, v), · · · , wm(u, v)). The
weight vector for each s − t path P is defined as (w1(P), w2(P), · · · , wm(P)) where wi(P) =∑

(u,v)∈P wi(u, v) for all i ∈ [1, · · · ,m]. Given a constraint threshold vector (c1, c2, · · · , cm) with
corresponding credit vector (λ1, λ2, · · · , λm), an s− t path P satisfies the ith constraint (denoted
as p ∝ i) iff wi(P) ≤ ci, and an SAT score φ(P) is defined as as: φ(P) =

∑
j:P∝i λj . The SAT

score for the graph G is φ(G) = maxP∈G φ(P), i.e. the maximum score among all s-t paths. The
QoSCV/QoSCE problem is to find a minimum set S of edges/vertices such that φ(G \ S) ≤ ρ for a
given score threshold ρ.

We have provided an exact algorithm in case of small m and a heuristic in case of arbitrary m.
We include here the psedo-code as shown in Algorithms 1 and 2. All the proofs and experimental
results can be found in [56].

2.1.2 Detailed Results for Dynamic and Evolving Networks

We next investigated critical node identification in dynamic networks by two approaches: (i) using
the time-series snapshot to represent the data, and (ii) using the probabilistic graphs.

For the time-series snapshot, given aG1, G2, ..., Gt representing the network at time t1, t2, ..., tt,
find the set of critical nodes at time ti based on the solution of time ti−1. Thus the solution was
adaptive from previous time step, rather than computing it from the scratch. Therefore, the al-
gorithm is able to handle the dynamics, thus providing a better tool to adaptively identify a set
of critical nodes during a sequence of attacks, or during the recovery process. We have provided

7

Algorithm 1: Exact Algorithm MFMCSP
1: Input: directed graph G = (V,E), constraint set M = {c1, · · · , cm}, credit vector (λ1, λ2, · · · , λm), satisfactory score threshold ρ;
2: Output: solution set of edge of QoSCE.
3: S ← all the minimal combinations ss of M with

∑
ci∈ss λi > ρ;

4: for each edge (i, j) ∈ E do
5: Set f(i, j) = f(j, i) = 0;
6: Set cf (i, j) = 1 and cf (j, i) = 0.
7: end for
8: while S 6= ∅ do
9: ss← extracted from S;

10: while ∃q ← the shortest path satisfying all the constraints in ss do
11: for each edge (u, v) ∈ q do
12: cf (q) = min{cf (u, v) : (u, v) ∈ q};
13: f(u, v) = f(u, v) + cf (q); f(v, u) = −f(u, v);
14: cf (u, v) = c(u, v)− f(u, v); cf (v, u) = c(v, u)− f(v, u);
15: end for
16: end while
17: end while
18: all the vertices reachable from s on the residual network induces a cut T .
19: Return T .

Algorithm 2: SDOP
1: Input: directed graph G = (V,E), constant ρ;
2: Output: a set D of edges to be removed.
3: Set D ← ∅;
4: while SAT TEST(G) == YES do
5: find all m single metric shortest paths {p1, · · · , pm}
6: for all edges e ∈ E do
7: Find the one appears in the maximum number of such path.;
8: end for
9: D ← D ∪ {e}; E ← E \ {e};

10: end while
11: Return D.

several fitness functions for each case of changes in a network, including node insertion/removal
and link insertion/removal. Based on these fitness functions, we provided two adaptive algorithms,
one for the critical node identification, and another for the critical link identification. More details
can be found in [30, 31].

For the probabilistic network approach, we modeled a dynamic network using the probabilistic
network model which allows us to incorporate the network uncertainty (such as links and nodes
disappear and reappear over time) and its prediction. Assessing network vulnerability in proba-
bilistic networks introduces a major challenging problem, that is, to compute the expected pairwise
connectivity (EPC) in a network. This problem is related to a famous open problem in network
reachability. We have shown that computing EPC is #P-complete and presented several sampling
methods to compute such a value. Based on this sampling methods, we further developed solu-
tions to find a set of k critical nodes by formulating the problem as a mathematical programming
problem and devising two approaches to overcome the difficulty of having an exponential number
of constraints in the mathematical formulation.

Formally, we studied the following problem:
k-Probabilistic Critical Nodes Problem (k-pCNP). Given a probabilistic network G = (V,E, p)

and an integer 0 ≤ k ≤ n, find a k nodes subset S ⊂ V that removal minimizes the expected
pairwise connectivity (EPC) in the residual network after removing the nodes in S where EPC is
defined as follows:

8

Algorithm 3: SAT TEST
1: Input: directed graph G = (V,E), constant ρ;
2: Output: YES if a satisfactory path probably exists, NO otherwise.
3: for every edge e ∈ E do
4: ϕ(e)←

∑m
i=1

we
i
ci
λi;

5: end for
6: p← shortest s-t path on metric ϕ;
7: if ϕ(p) > ρ then
8: Return NO;
9: else

10: Return YES;
11: end if

EPC(G) =
1

2

∑
u,v∈V ;u6=v

RELu,v(G)

where RELu,v(G) is the probability that v is reachable from u within G.
We have proven that computing this EPC is #P-complete (details of the proof can be found

in [13]), let alone finding a set of such k nodes. Since every #P-complete problem either has
a fully polynomial randomized approximation scheme (FPRAS) or is essentially impossible to
approximate, we are interested in (ε, δ)-approximations for EPC(G), i.e., algorithms returning an
estimation of EPC(G) accurate to within a relative error of ε factor with probability at least 1− δ.
An (ε, δ)-approximation is called an FPRAS if its running time is bounded by a polynomial in
1/ε, log(1/δ), and the instance input size. Along this direction, we have developed the following
algorithm.

Algorithm (ε, δ) Component Sampling Algorithm to compute EPC(G)

1. Let PE =
∑

e∈E pe

2. if PE < ε
2
n−2 then

3. return E2 = PE .

4. C2 ← 0.

5. for i = 1 to N2(ε, δ) do

• Select a node u ∈ V uniformly.

• Start a Breath-First Search from u. For each encountered edge (v, w), flip a coin of
bias pvw to determine its availability.

• Let Si be the number of visited nodes.

• C2 = C2 + (Si − 1).

6. Return E2 = nC2

2N2
as an unbiased estimator of EPC(G).

The beauty of the above algorithm is that it is proven to be an FPRAS. The proofs can be found
in [13]. This fast and accurate computing algorithm can be used in many applications that need to

9

compute the pairwise connectivity such as the network reachability problem.
We next present our solution for the k-pCNP which is a two-stage stochastic programming,

which is formulated as follows:

min
s∈{0,1}n

E [P (s, x, ξ)] (1)

s. t.
n∑
i=1

si ≤ k (2)

whereP (s,x, ξ) = min
∑
i<j

(1− xij) (3)

s. t. xij ≤ si + sj + 1− ξij, (i, j) ∈ E, (4)
xij + xjk ≥ xik, (i, j) ∈ E, k = 1..n (5)
xij = xji, i, j = 1..n (6)

s ∈ {0, 1}n, x ∈ [0,1]n
2

(7)

Discretization. To solve the stochastic program numerically, one needs to consider all possible
realization Gl ∈ SG and their probability masses fG(Gl). Then the two-stage stochastic program
can be written as a (one-level) mixed integer programming, denoted by MIPF :

min
N∑
l=1

fG(G
l)
∑
i<j

(1− xlij) (8)

s. t.
n∑
i=1

si ≤ k (9)

xlij ≤ si + sj + 1− ξlij, (i, j) ∈ E, l = 1..N (10)

xlij + xljk ≥ xlik, (i, j) ∈ E, k = 1..n, l = 1..N (11)

xlij = xlji, i, j = 1..n, l = 1..N (12)

s ∈ {0, 1}n, xl ∈ [0, 1]n
2

, l = 1..N (13)

The major challenge in solving this discretized form is that there is an exponential number (N =
2|E|) of variables and constraints. Thus, solving MIPF is intractable even for very small instances
of G. To overcome this difficulty, we developed two approximate mathematical programs of sub-
stantially smaller sizes: (1) Approximating via the expectation graph and (2) Sample average ap-
proximation method which reduces the number of realizations. The two solutions are shown in the
following pseudo-codes.

10

Algorithm Rounding on the Expectation Graph Algorithm (REGA)

1. Obtain an LP relaxation of MIPE with the relaxed constraints s ∈ [0, 1]n.

2. Initialize the set of selected nodes D = ∅.

3. Repeat k times the following steps

• Solve the LP relaxation

• Select u = arg max∈ V \Dsi.
• Add u to D and fix su = 1

4. Return k critical nodes in D.

Algorithm Sample Ave. Approx. Algorithm (SA3)
Parameter T : the number of sampling

Phase 1: Delayed Constraints

1. Initialize an LP with the objective 1
T

∑T
l=1

∑
i<j(1 − xlij) and only the constraints

s ∈ [0, 1]n, xlij ∈ [0, 1].

2. for l = 1..T do

• Generate the lth sample of G (adjacency matrix ξl).

• Add the constraints involved xlij to the LP.

• Solve the updated LP.

Phase 2: Iterative rounding

3. Initialize the set of selected nodes D = ∅.

4. Repeat k times the following steps

• Select u = arg max
i∈V \D

si.

• Add u to D and fix su = 1

• Re-solve the LP

5. Return k critical nodes in D.

2.1.3 Detailed Results for Interdependent Networks

We finally investigated the critical node detection problems on interdependent networks. Although
there exist some work on the vulnerability assessment of interdependent networks, most of them
focus on the artificial models of interdependent networks, i.e., random interdependency between
networks, and ignore the detection of top critical nodes in real networks. Therefore, we study the
following new optimization problem:

11

Definition 4 (IPND problem) Given an integer k and an interdependent system I(Gs, Gc, Esc),
which consists of two networks Gs = (Vs, Es), Gc = (Vc, Ec) along with their interdependencies
Esc. Let LGs(T) be the size of the largest connected component of Gs after the cascading failures
caused by the initial removal of the set of nodes T ⊆ Vs in Gs. The IPND problem asks for a set T
of size at most k such that LGs(T) is minimized.

We used a well-accepted cascading failure model, which has been validated and applied in
many previous works. Initially, there are a few critical nodes that fail in network Gs, which dis-
connects a set of nodes from the largest connected component of Gs. Due to the interdependency
of two networks, all the nodes in Gc that connect to failed nodes in Gs are also affected, and there-
fore stop working. Furthermore, the failures cascade to nodes which are disconnected from the
largest connected component in Gc and cause further failures back to Gs. The process continues
back and forth between two networks until there are no more failure nodes.

Our major findings are two fold: (1) We showed the (2 − ε)-inapproximability of the IPND
problem on interdependent networks; and (2) We provided the greedy framework with various
centralities to solve the IPND problem. We validated the performance of our solutions on a wide
range of interdependent networks with different scales, topologies, and interdependencies. The
proposed centrality function on interdependent networks is very important since it can be served
as a basic function for many research works in the future which requires a centrality function.

In a maximum cascading (Max-Cas) algorithm, we iteratively select a node u that leads to the
most number of new failed nodes, i.e., the maximum marginal gain to the current set of attacked
nodes T . When a new node u fails, it results in a chain of cascading failures. The number of new
failed nodes, referred to as cascading impact number, can be computed by simulating the cascading
failures with the initial set T ∪ {u} on the interdependent system I. However, the simulation
of cascading failures is time-consuming due to its calculation of cascading failures between two
networks. Each step in the cascading requires to identify the largest connected component of each
network.

To this end, we further improved the running time of our algorithm by reducing the number of
simulations. The idea is to check potential nodes whose removal creates at least one more failed
node in the same network due to the cascading failures. That is, this node (or its coupled node)
disconnects the network to which it belongs, i.e., it (its coupled node) is an articulation node of
Gs (or Gc), which is defined as any vertex whose removal increases the number of connected
components in Gs (or Gc). The reason is illustrated in the following lemma.

Lemma 1 Given an interdependent system I(Gs, Gc, Esc), removing a node u ∈ Vs from the
system causes at least one more node fail due to the cascading failure iff u (or its coupled node
v ∈ Vc) is an articulation node in Gs (or Gc).

According to this property, the proposed algorithm first identifies all articulation nodes in both
residual networks using the Hopcroft and Tarjan’s algorithm. Note that this algorithm runs in linear
time on undirected graphs, which is faster than one simulation of cascading failures. Thus, the run
time of each iteration is significantly improved especially when the number of articulation nodes
is small. Denote Max − Cas(Gs, T, {u}) as the impact number of u, Algorithm 4 describes the
details to detect critical nodes. In Algorithm 4, since it takes O(n) time to compute the cascading
impact number for each node and at most |A| < n articulation nodes will be evaluated, the run

12

Algorithm 4: Max-Cas Greedy Algorithm
Input: Interdependent system I(Gs, Gc, Esc), an integer k
Output: Set of k critical nodes in T ∈ Vs
T ← ∅
for i = 1 to k do

As, Ac ← set of articulation nodes of Gs and Gcrespectively
A← {u ∈ Vs|u ∈ As ∨ ((u, v) ∈ Esc ∧ v ∈ Ac)}
if A 6= ∅ then

u← argmaxu∈A Max-Cas(Gs, T, {u})
T ← T ∪ {u}

else
u← any node in Vs \ T

end if
Update I[Vs \ T]

end for
Return T

time is O(kn2) in the worst case. In practice, the actual run time is much less due to the small size
of A, which is shown in our experiment.

For the new centrality measure in interdependent networks, this measure is required to capture
both the intra-centrality (the centrality of nodes in each networks) and inter-centrality (the cen-
trality formed by the interconnections between two networks). Given an interdependent system
I(Gs, Gc, Esc), node u ∈ Vs is more likely to be critical if its coupled node v ∈ Gc is critical.
Furthermore, when node u is considered as a critical node, its neighbors are also more likely to
become important since the failures of these nodes can cause u failure. That said, the criticality
of these nodes imply the criticality of their coupled nodes. To capture this complicated relation in
interdependent systems, we develop an iterative method to compute the centrality of nodes, called
Iterative Interdependent Centrality (IIC). Initially, the centralities of all nodes in Gs are computed
by the traditional centrality, e.g., degree centrality, betweenness centrality, etc. After that, these
centralities of nodes in Gs are reflected to coupled nodes in Gc and the centralities of nodes in Gc

are updated based on the reflected values. The centralities of nodes in Gc continue to be reflected
on nodes of Gs and update centralities of these nodes. Two key points of IIC are the updating
function and the convergence.

The updating function is defined as follows:

C(u) = αw(u) + (1− α)
∑

v:(u,v)∈E

w(v)

dv

where w(·) is the centralities of nodes and the reservation factor α lying in the interval [0, 1]. The
underlying reason we use centrality-based degree is that a node is usually more critical if most
of its neighbors are critical nodes. We can easily modify this function to cope with the weighted
graphs. This centrality can be computed based on matrix multiplications and we have proved its
convergence in our paper [32], which was published on the IEEE Transactions on Smart Grid.

k Interdependent Networks. In order to solve the above IPND problem in k interdependent
networks, we devised an interdependent centrality method. This method is not only used to solve
this problem, but also can be applied for other problems which requires centrality. Note that many
centrality methods have been developed for individual networks. But none has been studied for the
k interdependent networks. The two major challenges of this problem are to measure the centrality

13

of a node with respect to its own networks, and then to other networks. Furthermore, the iteratively
updating must converge. To this end, we have developed the following method.

When two nodes are coupled, the failure of one node is equivalent to the failure of the other
node, thus both of them should have the same centrality value. There are two kinds of nodes:
(1) nodes have no coupled nodes in other networks and (2) nodes have at least one coupled node
in other networks. The centrality of the former type of node should depend only on the network
structure. On the other hand, the centrality of the later type of node should depend on neighbor
nodes in multiple networks. The key idea to design the new centrality is to decompose the centrality
of the coupled nodes into different component corresponding to different networks.

If u belongs to only network Gi, then:

C(u) =
1

2
C(u) +

1

2

∑
v:(u,v)∈Ei

C(v)

dv

If ui1 , . . . , uip are p coupled nodes of networks Gi1 , . . . , Gip , then the centrality of these nodes
will be:

C(ui1) = . . . = C(uip) =
1∑p

t=1 βit

p∑
t=1

βit

1

2
C(uit) +

1

2

∑
v:(uit ,v)∈Eit

C(v)

dv

=

1∑p
t=1 βit

p∑
t=1

(βitαC(u) + (1− α)
∑

v:(uit ,v)∈Eit

C(v)

dv
)

The parameter βit shows the fragility of the network Git . If network Git is very fragile e.g.
very sparse, the value of βit is large.

The remaining key point for this method is to prove its convergence. We proved it via the
following steps. (We include the sketch of proofs here as the paper is being written and thus is not
available at this time)

Definition 5 The associated graph of a nonnegative square matrix A is a directed graph GA of n
vertices, where n is the size of A. G has edge from vertex i to vertex j when Aij > 0.

Lemma 2 The nonnegative matrix A is irreducible if and only if its associated graph GA is
strongly connected.

Lemma 3 The nonnegative matrix A is aperiodic if and only if the greatest common divisor of the
lengths of the closed directed paths in its associated graph GA is 1.

Theorem 1 (Perron-Frobenius theorem) If the nonnegative matrix A is irreducible and aperi-
odic, then there exists a positive real number r such that r is an eigenvalue of A and any other
eigenvalue λ is strictly smaller than r in absolute value, |λ| < r.

Theorem 2 (Perron-Frobenius theorem) If the nonnegative matrix A is irreducible and aperi-
odic, then there exists a positive real number r such that r is an eigenvalue of A and any other
eigenvalue λ is strictly smaller than r in absolute value, |λ| < r.

14

xt =
MkMk−1 . . .M1xt−1

|MkMk−1 . . .M1xt−1|
=

Mxt−1

|Mxt−1|
The metric will converge if M = MkMk−1 . . .M1

M i
uv =

α if u = v

(1− α)/div if (u, v) ∈ Ei

0 otherwise

The uniqueness of the centrality vector xt will converge to a unique vector x regardless of the
initial vector x0.

Let v1, v2, . . . , vn be the basis of eigenvectors of M , we have:

Mvi = λivi

x0 can be represented by basis as: x0 =
∑

i civi
Then:

M tx0 =
∑
i

ciM
tvi =

∑
i

ciλ
t
ivi

M tx0

c1λt1
= v1 +

1

c1

∑
i>1

(
λi
λ1

)t
civi

x[u] = αx[u] + (1− α)
∑

v:(u,v)∈E

x[v]

dv

2.1.4 Detailed Results for Cascading Failures

We re-investigated the above problems in the presence of cascading. Not only can the failures be
cascaded, but the attack itself can also be propagated. For example, chemical agents can spread
through a network (e.g., water), viruses spreading over computer networks, or even deceptive mes-
sages influence over online social networks. Thus in this task, we further exploited the network
vulnerability considering these type of attacks, thereby providing a much more effective defense
strategy. We focused on finding the minimum number of nodes such that if these nodes are at-
tacked, the attack can spread into the whole network and create the greatest damage. Therefore,
these nodes are the most vulnerable to this type of attack. As different attacks have their own prop-
agation model, we investigated this problem on various propagation models. In addition, the attack
cannot spread infinitely, thus we set the time constraint on the spreading. Along this direction, we
formulated the following new optimization problems and studied its inapproximability along with
its approximation algorithms.

Definition 6 (Critical Spreading Nodes Identification (CSNI).) Given a complex system S, a
latency bound d, and a propagation model P , find a minimum subset nodes N such that by launch-
ing attacks at N initially, all other nodes in S will be “infected” within at most d hops under
P .

15

First, we considered P as a linear threshold model. In this model, a node v is infected (or
refer as activated) iff there are more than ρvd(v) neighbors of v active, where d(v) denotes the
degree of node v and ρv is some input threshold. Once v is active, v can continue in the process of
spreading the influence and infect other nodes. The spread will continue after d hops. In [22, 35],
we have shown that when d = 1, CSNI cannot be approximated within ln ∆ − O(ln ln ∆) unless
P = NP where ∆ is the maximum degree of G. We also showed that it cannot be approximated
within lnB − O(ln lnB) with degrees bounded by B, and cannot be within (1/2− ε) lnn, unless
NP ∈ DTIME(no(log logn)). When 1 < d < 4, the problem cannot be approximated within
O(ln l) and for d > 4, it cannot be approximated within 2log1−ε n. All detailed proofs can be found
in [22, 35].

For d = 1, we developed a tight approximation algorithm with ratio H((1 + ρ)∆) where H(n)
is the Harmonic function. In general case where d < 4, we devised a greedy algorithm with a tight
log n ratio in the power-law graphs. The algorithm can be run in a very large network, consisting
of millions nodes and edges [22]. The algorithm can be modified to cope with a case that we just
want to infect a certain portion of the network, not as the whole.

Effective Defense Strategies to Dynamic Attacks with Cascading Failures. We investigated
the serial attack points in order to maximize the number of failed nodes after the cascading failures.
These attack points are considered as the most vulnerable nodes which need to be protected during
the attacks. We provided theoretical analysis, including inapproximalblity results, and algorithmic
solutions for this problem.

Due to the cascading failures, the failures of a small set of nodes S can result in a catastrophic
number of failed nodes. Therefore, these nodes in set S become the most critical nodes. Addi-
tionally, the order of these nodes to be destroyed can lead to different outcomes. In this study, we
considered a scenario in which attacks can be launched after another, that being said, the nodes in S
are destroyed in a certain order to obtain the maximum malfunction of the network. Furthermore,
nodes are failed in the cascading manner due to the load redistribution of failed nodes, called the
Load Redistribution model (LR-model). In this model, a set of nodes S are failed initially, then the
failures are propagated to other nodes in time steps. When node u fails, its load is redistributed to
its neighbors and each alive neighbor will received an additional load which is proportional to its
weight. Precisely, each neighbor v of u will receive the following additional load:

∆L(v) = L(u)× w(v)∑
l∈N+

u
w(l)

Due to the load redistribution, the load of some nodes are exceeding their capacities, hence fail
in the next time step. The process of load redistribution and node failing will stop when there are
no more failed nodes. The set of failed nodes caused by the initial failure of S is denoted by F (S).

In particular, given an order set S = {s1, s2, . . . , sk}, the set of failed nodes after si is attacked
is Fi(S) = F (Fi−1(S) ∪ {si}). Denote F+(S) as Fk(S), the set of failed nodes when nodes in S
is attacked serially. We formally define the problem as follows.

Definition 7 (Cascading Critical Node Problem (Cas-CNP)) Given a network G = (V,E) and
an integer k, the problem asks to find a ordered subset S ⊆ V of size |S| = k such that the serial
failures of nodes in S maximizes the number of failed nodes F+(S) under the LR-model.

16

Our major findings of this task are two fold: (1) Showed the O(n1−ε)-inapproximability of
theCas-CNP; (2) Provided the cascading potential metric to solve the problem.

In details, our results are described as follows.

Theorem 3 It is NP-hard to approximate the CasCN problem within ratio of O(n1−ε) for any
constant 1 > ε > 0.

We use the gap-introduction reduction to prove the inapproximability of the CasCN problem,
using a polynomial time reduction from a restricted variant MIN3SC2 of the Set Cover problem.
The proof can be found in [3].

Cascading Potential Metric. In the dynamic attacks (attacks can be launched after the other),
we need to consider the co-impact of attacks to obtain a large number of failed nodes. Therefore,
we developed the cascading potential of node u, denoted by C(u) as follows:

C(u) =
|F ({u})|

n
+

∑
v∈V−F ({u}) ∆Lu(v)∑

v∈V−F ({u})(C(v)− L(v))

where F ({u}) is the set of failed nodes when u fails and ∆Lu(v) is the additional load that v
receives due to the failure of u.

This metric helps to evaluate the importance of nodes wrt different attack scenarios. Based on
this metric, we developed the following Algorithm 5 to the Cas-CNP problem.

Algorithm 5: Cascading Potential Algorithm
1: Input: A network G = (V,E), an integer k and parameter α.
2: Output: A set S of k attacked nodes.
3: Compute the centrality of all nodes
4: Sort nodes in non-increasing order of centrality C(u1) ≥ C(u2) ≥ . . . ≥ C(un)
5: Initialize S ← ∅
6: j ← 1
7: for i = 1 to k do
8: while uj ∈ F+(S) do
9: j ← j + 1

10: end while
11: S ← S ∪ {uj}
12: end for
13: Return S

Cooperative Attacks. The above strategies focus on selecting nodes to maximize the number of
new failed nodes and redistributed load. However, if nodes have a high tolerance factor, they can
stand still under the additional load redistributed from attacked nodes. As a consequence, the load
of many nodes is increased, but there is no or only a few more nodes failed. In this case, the total
number of failed nodes at the end of the cascading process is very low. Therefore, we developed
another solution to overcome this challenging.

17

Since a node uwill fail when its load passes its capacity, we can use the difference C(u)−L(u)
as the health of u. The weaker u is, the more damage it receives under the same amount of attack
∆L. Thus, the preference of attacking u can be defined as:

γ(u,∆L) =

{
α∆L

C(u)−L(u)
if ∆L+ L(u) ≤ C(u)

1 otherwise

where 0 < α < 1 is a tunable parameter.
The benefit of this attack preference function is that the more wounded a node is, the higher

attack preference it has. This property is stated in Lemma 4.

Lemma 4 For any node u at two points of time, if u is more wounded at the second point, i.e.,
L2(u) > L1(u), then the attack preference under the same attack ∆L is higher at the second
point: γ2(u) ≥ γ1(u).

In such a cooperative attack, we defined the efficiency of selecting the next v to be destroyed.
If the load redistributed from v to u is ∆L(u), the efficiency of v in taking down u is:

λ(v, u) = γ(u,∆L(u))σ(L(u))

The overall efficiency of v is total:

λ(v, u) =
∑
u∈V \v

λ(v, u)

The efficiency function has the following properties:

Lemma 5 Given a fixed load L(u) and attack ∆L with L(u) + ∆L ≤ C(u), the efficiency on u is
monotone decreasing and goes to 0 when the capacity C(u) increases and goes to infinity.

Lemma 6 Suppose that the capacity C(u) is linear to the load C(u) = T ∗ L(u) with constant
factor T . Then, given a fixed attack ∆L with L(u) + ∆L ≤ C(u), the efficiency on u is monotone
non-increasing and goes to 0 when the load L(u) increases and goes to infinity.

Based on the efficiency evaluation, we developed the Cooperating Attack (CA) algorithm as
shown Algorithm 6.

Identification of Critical Nodes with Threshold Cascading Failure. In this study, we inves-
tigated the vulnerability of networks under simultaneous attacks with cascading failures. More
specifically, we identified k most critical subsets of a network whose simultaneous removal will
minimize the total pairwise connectivity of the remaining network under the cascading failure.
That being said, once a node v has more than ρv neighbor nodes failed, v will fail and this failure
will be propagated further. We devised an Integer Programming (IP) with sparse metric to ob-
tain the optimal solution for networks with couple thousands of nodes. For larger networks, we
proved the inapproximability and designed a near-optimal solution. Furthermore, we developed a
centrality method to identify critical nodes in k-interdependent networks.

We focused on finding critical nodes in (i) an individual networks with threshold cascading
failure and (ii) k interdependent networks. More specifically, we have investigated the following
Cascading Critical Node Detection (CCND) problem:

18

Algorithm 6: Cooperating Attack (CA)
1: Input: A network G = (V,E) and an integer k.
2: Output: A set S of k seed nodes.
3: Initialize S ← ∅
4: for i = 1 to k do
5: Form Gi as the network after the failure of S in G
6: Evaluate the efficiency of all node in Gi

7: Select u as the node with highest efficiency
8: S ← S ∪ {u}
9: end for

10: Return S

Definition 8 Given two integers k, d, a vector of fractional numbers with size n where each θu ∈
(0, 1) and an undirected graph G = (V,E). Let P (S) be total pairwise connectivity of residual
graphG after the d-hop cascading failures caused by the initial removal of the set of nodes S ∈ V .
The CVND problem asks for k most vulnerable nodes such that P (S) is minimized.

For the cascading failure, we considered the threshold model in which each node u in the
network has a threshold θu ∈ [0, 1], typically drawn from some probability distribution. Starting
with an initial set of failure nodes F0, the dynamics of failure cascades unfold round by round
as follows. The cascading process is deterministically in discrete rounds: in round t, all nodes
that failed in round t − 1 remain failed, and another node v fails if the total number of its failure
neighbors is at least θu, i.e., |N(u) ∩ Ft−1| ≥ θudeg(u), in which Ft−1 is the set of failure nodes
before round t− 1.

We first proved it is NP-hard to be approximated into Ω
((1+ d

n1−ε−1
)2(n−k)

nε

)
where n is the size

of the network, which makes it unrealistic for one to quickly obtain optimal solutions within the
time constraint. To this end, we proposed TRGA, an iterative 2-phase algorithm to effectively
solve these problems in a timely manner. In a big picture, TRGA algorithm detects the ultimate
failure nodes after cascading failures and traces back to the critical nodes in each iteration, and
terminates until k critical nodes are detected. TRGA algorithm also takes into account the local
search, constraint pruning and lazy-update techniques in order to further improve its efficiency and
shorten its processing time. In addition, we formulated the mathematical programming to achieve
its optimal solution and applied a sparse metric technique to reduce the number of constraints. The
performance of TRGA algorithm was validated on both real-world and synthetic networks with
different topologies.

More specifically, we proved the following theorem:

Theorem 4 Assuming P 6= NP , the CVND problem is NP-hard to be approximated within

Ω
((1+ d

n1−ε−1
)2(n−k)

nε

)
for any ε < 1− logn 2 on general graphs.

The detailed proofs can be found in [1].
Based on the above inapproximability result, we provided the following IP with sparse metric

technique to handle small networks with size of thousands nodes.

19

For each node i ∈ V and all integers t ∈ [0, d], we define

vti =

{
1, if node i fails in round t

0, otherwise

Note that v0
i = 1 when node i is a vulnerable node and fails at the beginning. Then, using uij

defined as above, we have the following ILP:

min
∑
i,j∈V

uij

s.t. vdi + vdj + uij ≥ 1 ∀(i, j) ∈ E
uij + ujh − uhi ≤ 1 ∀i, j, h ∈ V∑
i∈V

v0
i ≤ k∑

j∈N(vi)

vt−1
j + θ · deg(vi)v

t−1
i

≥ θ · deg(vi)v
t
i ∀i ∈ V, ∀0 ≤ t ≤ d

vti ≥ vt−1
i ∀0 ≤ t ≤ d

∀i ∈ V, 0 ≤ t ≤ d

vti ∈ {0, 1} ∀0 ≤ t ≤ d

uij ∈ {0, 1}

where the objective is to minimize the total pairwise connectivity. The first constraint guarantees
that at least one endpoint of a link has to be deleted after d round cascades if its two endpoints are
disconnected in the optimal solution. The second constraint imposes the triangular connectivity.
That is, if node i and j are connected, node j and h are connected, node i and h have to be
connected. The third constraint means that the total pairwise connectivity after d round failure
cascades is at most β fraction of all node-pairs. The last two constraints deals with the cascades
process and keeps failed nodes to be failure in the following rounds respectively.

For the large-scale networks, we provided a 2-phase TRGA algorithm as shown in Algorithm
7.

2.2 Network Structural Interdependency and Vulnerability Assessment
We continued to investigate the network vulnerability from the network structure perspective.
There are several reasons to study this approach: (i) Changing network structures will change
the network functions, and thus may break down the system, (ii) The changes or failures occurred
in one module can have a profound impact which can consequently lead to the transformation of
other modules, thus requiring us to understand the inter- and intra-interdependence within these
modules.

We used community structure to approximate the network structure. To accomplish the sec-
ond goal, we studied the following: (1) Prediction models based on network modular structures
to characterize and forecast the interdependent responses of network components in evolving net-
works with limited data. Including the dynamics and evolution of a network in the analysis of

20

Algorithm 7: TRGA Algorithm
Input : Network G, Threshold vector θ
Output: The set of k vulnerable nodes S

1 k′ ← k;
2 S ← ∅;
3 while |S| < k do
4 k′ ← k − |S|;
5 D ← k′ largest degree nodes in G[V \ S];
6 P← #failed nodes after cascading failures by removing D from G[V \ S];
7 U ← ∅;
8 // Ultimate Failure Nodes Identification
9 while Pairwise Connectivity > P do

10 Use Constraint Pruning in [?] to solve the LP formulation with P;
11 P← P− disconnected node-pairs after removing u;
12 u← the node with largest v∗i ;
13 U ← U ∪ {u};
14 G← G[V \ {u}];
15 end
16 // Critical Nodes Tracing Back
17 Q← ∅; // Priority Queue
18 S′ ← ∅;
19 while ∃ one node does not fail do
20 if Q = ∅ then
21 foreach node u do
22 Calculate the cascading influence after removing u from G;
23 end
24 Construct Q based on cascading influence of each node;
25 end
26 else
27 S′ ← S′∪ the node in Q with max priority;
28 Update cascading influence caused by removing this node;
29 end
30 end
31 if |S′| > k′ then
32 S ← S∪ k′ largest degree nodes in G[V \ S];
33 end
34 else
35 S ← S ∪ S′;
36 end
37 end
38 // Local Search
39 S∗ ← S;
40 foreach node u ∈ S do
41 Swapping(u);
42 end
43 S ← S∗;
44 return S;

inherent modules is a new task that has not yet been well investigated. The study of such evolution
requires computing modules of the network at different time instances. However, identifying net-
work modules in each state of the network from scratch may result in prohibitive computational
costs, particularly in the case of highly dynamic networks. In addition, it may be infeasible in the
case of limited topological data. In this regard, the study requires us to solve many interesting
problems such as: (1) How to devise new measures and methods for computing network modules
which are robust to changes, (2) How to easily update the modules once the changes occur without
re-calculating them from scratch, (3) How sensitive the community structure is with respect to the
failues of nodes and edges.

21

Relevance. This study helps us understand the interdependencies of network components and
provide a robust solution for many applications which are sensitive to the structure of network
communities. This study also addresses the improvement of network robustness with minimum
additional costs so that the network modules are less sensitive to changes, thus providing a cost-
effective protection scheme.

The knowledge about this crucial vulnerability of network community structure is not only
helping to understand the network interdependencies but also of considerable usages, particularly
having many applications for social-aware methods in mobile ad-hoc and online social networks
(OSNs). For instance, since social-based forwarding and routing strategies in Delay Tolerant Net-
works rely heavily on the highest ranking node in each community to forward the message, the
awareness of this vulnerability can help to design either a routing algorithm that do not overload
those crucial nodes, or to design an effective backup plan when some of them may fail at the same
time.

Summary of Findings.

• Provided the first constant approximation algorithm to find community structure in power-law
networks and trees with performance guarantee. This is important first step to predict the
changes of community structure.

• Provided the first adaptive approximation algorithms for both disjoint and overlapping commu-
nity structure. The adaptive solutions help us update the community structure during the changes
in a very short amount of time.

• Assessed the network structure vulnerability during attacks, both at edges and nodes. Showed
that community structure is not as strong as we think.

2.2.1 Detailed Results for Identifying Community Structures

Consider a network represented as an undirected graph G = (V,E) consisting of n = |V | vertices
and m = |E| edges. The adjacency matrix of G is denoted byA = (Aij), where Aij is the weight
of edge (i, j) and Aij = 0 if (i, j) /∈ E. We also denote the (weighted) degree of vertex i, the total
weights of edges incident at i, by deg(i) or, in short, di.

Community structure (CS) is a division of the vertices in V into a collection of disjoint subsets
of vertices C = {C1, C2, . . . , Cl} (with unspecified l) where

⋃l
i=1 Ci = V . Each subset Ci ⊆ V is

called a community and we wish to have more edges connecting vertices in the same communities
than edges that connect vertices in different communities. The modularity of C is the fraction of
the edges that fall within the given communities minus the expected number of such fraction if
edges were distributed at random. The randomization of the edges is done so as to preserve the
degree of each vertex. If vertices i and j have degrees di and dj , then the expected number of edges
between i and j is didj

2M
. Thus, the modularity, denoted by Q, is then

Q(C) =
1

2M

∑
ij

(Aij −
didj
2M

)δij (14)

where M is the total edge weights and the element δij of the membership matrix δ is defined as

22

δij =

{
1, if i and j are in the same community

0, otherwise

The modularity values can be either positive or negative and the higher (positive) modularity
values indicate stronger community structures. Therefore, the maximizing modularity problem
asks us to find a division C which maximizes the modularity value Q(C).

This problem is different from the partition problem as we do not know the total number of
partitions beforehand. That being said, l is unspecified. Somewhat surprisingly, modularity maxi-
mization is still NP-complete on trees, one of the simplest graph classes.

Theorem 5 Modularity maximization on trees is NP-complete.

The proof has been presented in [23], reducing from the Subset-Sum problem.

Exact Solutions. Although the problem is in NP class, efficient algorithms to obtain optimal
solutions for small size networks are still of interest. We have presented an exact algorithm with
a run time of O(n5) to the problem on uniform-weighted trees [23]. The algorithm is based on
the dynamic programming, which exploits the relationship between maximizing modularity and
minimizing the sum-of-squares of component volumes, where volume of a component S is defined
as vol(S) =

∑
v∈S dv.

When the input graph is not a tree, we provided an exact solution based on Integer Linear
Programming (ILP) [23]. Note that in the ILP for modularity maximization, there is a triangle
inequality xij + xjk − xik ≥ 0 to guarantee the values of xij be consistent to each other. Here
xij = 0 if i and j are in the same community; otherwise xij = 0. Therefore, the ILP has 3

(
n
3

)
=

θ(n3) constraints, which is about half a million constraints for a network of 100 vertices. As a
consequence, the sizes of solved instances were limited to few hundred nodes. Along this direction,
we have presented a sparse metric, which reduces the number of constraints to O(n2) in sparse
networks where m = O(n).

Approximation Algorithms. When G is a tree, the problem can be solved by a polynomial time
approximation scheme (PTAS) with a run time ofO(nε+1) for ε > 0 [23]. The PTAS is solely based
on the following observation. Removing k − 1 edges in G will yields k connected communities
and Qk ≥ (1 − 1

k
)Qopt where Qk is the maximum modularity of a community structure with k

communities, and Qopt is the optimal solution.
When G having the degree distribution follows the power-law, i.e., the fraction of nodes in

the network having k degrees is proportional to k−γ , where 1 < γ ≤ 4, the problem can be
approximated to a constant factor for γ > 2 and up to an O(1/ log n) when 1 < γ ≤ 2 [19]. The
details of this algorithm, namely Low-Degree Following (LDF), is presented below.

23

Algorithm. Low-degree Following Algorithm (Parameter d0 ∈ N+) 12pt

1. L := ∅,M := ∅, O := ∅, pi = 0 ∀i = 1..n

2. for each vertex i ∈ V do

3. if (ki ≤ d0) & (i /∈ L ∪M) then

4. if N(i) \M 6= ∅ then

5. Select a vertex j ∈ N(i) \M

6. Let M = M ∪ {i}, L = L ∪ {j}, pi = j

7. else

8. Select a vertex t ∈ N(i)

9. O = O ∪ {i}, pi = t

10. L = ∅

11. for each vertex i ∈ V \ (M ∪O) do

12. Ci = {i} ∪ {j ∈M | pj = i} ∪ {t ∈ O | ppt = i}

13. L = L ∪ {Ci}

14. Return L
The selection of d0 is important to derive the approximation factor as d0 needs to be a sufficient

large constant that is still relative small to n when n tends to infinity. In an actual implementation
of the algorithm, we have designed an automatic selection of d0 to maximize Q. LDF can be
extended to solve the problem in directed graphs [19].

Furthermore, in some cases, communities are sharing some nodes between them, referred as
overlapping communities. That is, a person or a node can belong to more than one community.
Therefore, we further designed an algorithm to find overlapping network modules which required
only one parameter, indicating the level of overlapping. Simulations showed that this is the best
one in the literature. This work is published in the IEEE Conference on Social Computing, 2011.

2.2.2 Detailed Results for Adaptively Updating Community Structures

We continued studying the adaptive identification of community structures, focused on the follow-
ing question: How to update the evolving community structures without re-computing it. In this
approach, the community structure (CS) at time t is detected based on the community structure at
time t−1 and the changes in the network, instead of recomputing it directly at time twithout taking
advantages of a current solution at time t − 1. Along this direction, we have devised an adaptive
approximation algorithm for this problem, published in [11]. Indeed, the above LDF algorithm can
be enhanced to cope with this situation. At first LDF is run to find the base CS at time 0. Then
at each time step, we adaptively follow and unfollow the nodes that violate the condition 3 in Alg
LDF.

24

We further investigated the overlapping community structure and provided the first adaptive
algorithm to adaptively updating the overlapping network modules. This work is published in [8,
56].

2.2.3 Detailed Results for Assessing Network Structure Vulnerability

Impact of Nodes’ Failures on Network Components. In this task, we are interested in identi-
fying the set of nodes whose removal triggers a significant restruction of the current community
structure. In term of notations, given the input network, the community detection algorithm A
and a positive number k, we formulated the Community structure Vulnerability Assessment (CVA)
which aims to find a set S of k nodes whose removal maximally transforms the current network
community structure to a totally different one, evaluated via the Normalized Mutual Information
measure.

Definition 9 Given a network represented by an undirected and unweighted graph G, a specific
community detection algorithmA, and a positive integer k ≤ N , we seek for a subset S ⊆ V such
that S = argmin

S′⊆V,|S′|=k
{NMIX(S ′)}, where X ≡ A(G), and NMIX(S ′) ≡ NMI(X,A(G[V \S ′]))

for any S ′ ⊆ V .

Our major findings of this tasks are: (1) We analyzed conditions that can possibly lead to the
minimization of NMI on community structures. (2) We devised an approximation algorithm for
the case k = 1, and suggested multiple heuristic algorithms for CVA problem. We validated the
effectiveness of our solutions on both synthesized data with known community structures and real-
world traces including Arxiv citation network, Facebook, and Foursquare social networks. The
details can be found in [6].

We have provided the basic results for the MNI analysis as follows:

Lemma 7 There is a graph G = (V,E) in which NMIX() is not a submodular function. More-
over, there are subsets L ⊆ T ⊆ V such that NMIX(T) ≥ NMIX(L) (where L, T are sets of
removed nodes).

Theorem 6 Given two community assignments A ⊆ B, there is s /∈ A,B such that NMIX(A +
x)−NMIX(A) < NMIX(B + s)−NMIX(B).

We provided three algorithms to find a subset S. Our first heuristic algorithm is oriented based
on the modularity contributions of network communities in G. There are two versions in general,
called greedyMN and greedyMC , for this heuristic approach with different priorities given to
nodes and communities. In greedyMN , all nodes u’s in the network are ranked based on their
modularity contributions qu,C’s, and the top k nodes are selected in the solution set. The second
algorithms, greedyMC , consists of two steps: it first finds the community C having the most
modularity contribution qC , and then selects a node u that has the highest modularity portion qu,C
in C until k nodes are included in the solution set.

Our second heuristic approach greedyC for CVA problem is based on the component. Basi-
cally, given a community structure X and the algorithm A, greedyC tries to find nodes which can
potentially break current communities into smaller ones of the relatively same size, where the pref-
erence given to large-size communities. In particular, greedyC looks into communities Xi’s of X ,
ordered by their sizes, and selects nodes that can divide this community into more subcomponents.

25

Impact of Edges’ Failures on Network Components. In this task, we are interested in identify-
ing the set of edges whose removal triggers a significant reconstruction of the current community
structure, defined as follows:

Definition 10 (DBC) Given an undirected graph G = (V,E), and a set C of k communities,
find a subset S ⊂ E of minimum cardinality such that removing S from the graph breaks every
community in C .

Our major findings of this task are:

• We defined the framework for community structure fragility. At first we introduced the density
based broken community (DBC) problem for breaking k communities with the minimum num-
ber of edge removals and provided an approximation algorithm, namely CVA, with theoretical
performance guarantee, O(log k). Its pseudo-cde is shown in Algorithm 8.

• To analyze the vulnerability of the community structures in a broader sense, we extended the
problem formulation to communities produced from an arbitrary community detection algo-
rithm. We offered an efficient heuristic to break the communities and identify the set of critical
edges.

• We conducted extensive experiments with different parameters to mine interesting observations
about the behavior of broken communities after edge removal.

The details can be found in [2].
For general definition of community structure, we extended the DBC problem to the following

one:

Definition 11 (Broken Community) Consider a community detection algorithm A , which pro-
duces a collection C of communities on graph G (written C = A (G)). Let G′ be a new graph
after removal of a set of edges, and let C ′ = A (G′). Let γ ∈ (0, 1). A community C ∈ C is said
to be broken in graph G′ if there does not exist a community C ′ ∈ C ′ satisfying
(i) C ′ ⊂ C, and (ii) |C ′|/|C| > γ

We have shown that partitioning a community C into at least c ε-balanced subparts, where
γc ≥ 1 + ε makes it broken. Therefore, we developed the following Algorithm 9.

2.3 Impact Analysis of the Power-Law Degree Distribution on Network Vul-
nerability

Many practical complex networks, such as the Internet and WWW are discovered to follow power-
law distribution in their degree sequences, i.e., the number of nodes with degree i in these networks
is proportional to i−β for some exponential factor β > 0. Although power-law networks have been
found robust under random attacks and vulnerable to intentional attacks via experimental obser-
vations, a better understand of their vulnerabilities from a theoretical point of view still remains
open.

Furthermore, it is a common belief that solving solve optimization problems in power-law
graphs is easier that than in general graphs. From an algorithmic perceptive, some experiments

26

Algorithm 8: CVA: An approximation algorithm for finding the critical edges
Data: Network G = (V,E), DeletionV ector D, C , |C | = k
Result: A set S ⊆ E edges

1 S ← ∅;
2 C ← ∅;
3 for each edge e ∈ E do
4 compute the gain f(e);
5 end
6 while |C| < k do
7 e′ ← argmax

e∈E
{f(e)};

8 In case of a tie, choose randomly;
9 S ← S ∪ {e′};

10 for l = 1 to k do
11 if Cl /∈ C then
12 if e′ ∈ Cl then
13 Dl ← Dl − 1;
14 if Dl ≤ 0 then
15 C ← C ∪ {Cl};
16 f(e) = f(e)− 1 for all e ∈ Cl;
17 end
18 end
19 end
20 end
21 end
22 return S;

Algorithm 9: CCF: A heuristic algorithm for breaking communities
Data: Network G = (V,E), k Communities C , strictness threshold γ
Result: A set S ⊆ E of edges

1 S ← φ;
2 c← z : z is least integer satisfying zγ ≥ 1 + ε;
3 for each community Ci ∈ C do
4 compute the c-way balanced partitioning;
5 Cuti = set of edges to cut Ci into c parts;
6 S ← S ∪ Cuti;
7 end
8 return S;

27

had been developed to evaluate the simple algorithms for optimization algorithm in power-law
graphs. However, there is no work that provides an algorithm framework for solving a set of
problems in power-law graphs with the degree distribution property, let alone a theoretical analysis
framework for analyzing approximation ratios.

Therefore, we focused on addressing the following issues: (i) Analyzed the power-law network
vulnerability under various attacks, (ii) Studied the complexity of many optimization problems,
and (iii) Developed approximation algorithms on power-law graphs.

Relevance. Clearly this study is very important in understanding of and providing solutions to
network vulnerability in real-life as many of them follows the power-law degree distribution. The
results in this task advance the research front of approximation theory and optimization. They help
us develop several solutions for many problems on PLNs, and thus the findings in this task are
extremely helpful for many applications.

Summary of Findings.

• Showed that the power-law networks almost surely are not vulnerable to attacks, including ran-
dom and preferential attacks when β is small enough.

• Developed a new embedding technique to re investigate most of classic optimization problem
on power-law networks such as dominating set, maximum independent set, vertex cover, clique.
We have shown these problems remain NP-complete on power-law networks but they may have
better (tighter) approximation ratios.

• Developed an approximation algorithm framework, called Low-Degree Percolation (LDP) Al-
gorithm Framework, for solving Minimum Dominating Set (MDS), Minimum Vertex Cover
(MVC) and Maximum Independent Set (MIS) problems in power-law networks.

2.3.1 Detailed Results for Vulnerability Analysis

In this task, we studied the vulnerability of power-law networks under random attacks and adver-
sarial attacks using the in-depth probabilistic analysis on the theory of random power-law graph
models. Our results indicate that power-law networks are able to tolerate random failures if their
exponential factor β is less than 2.9, and they are more robust against intentional attacks if β is
smaller. Furthermore, we revealed the best range [1.8, 2.5] for the exponential factor β by opti-
mizing the complex networks in terms of both their vulnerabilities and costs. When β < 1.8,
the network maintenance cost is very expensive, and when β > 2.5 the network robustness is
unpredictable since it depends on the specific attacking strategy.

The detailed proofs can be found in [37, 38]. Here, we listed our major findings in terms of the
theorems.

Theorem 7 In a residual graph Gr of G(α,β) after random failures,

• If β < βp, the expected pairwise connectivity E(P) is a.s. Θ(n2);

• If β ≥ βp, the pairwise connectivity P is a.s. at most 1
2
n
(
cr(β)n

2
β log n− 1

)
.

28

where βp satisfies that (1− p)ζ(βp − 2)− (2− p)ζ(βp − 1) = 0 and

cr(β) = 16/

[
ζ(β)

(
2− p− (1− p)ζ(β − 2)

ζ(β − 1)

)]2

.

Theorem 8 In a residual graph GI
p of G(α,β) after interactive preferential attacks,

• If β + β′ < 3.47875, the expected pairwise connectivity E(P) is Θ(n2);

• If β + β′ ≥ 3.47875, the pairwise connectivity P is a.s. at most 1
2
n
(
c(β)n

2
β log n− 1

)
.

where c(β) = 16/
[
ζ(β)

(
2− ζ(β−2)

ζ(β−1)

)]2

is a constant on any given β.

Theorem 9 In a residual graph GE
p of G(α,β) after expected preferential attacks,

• The pairwise connectivity P is a.s. Θ(n2)

if c < min

{
c

∣∣∣∣∑x
eα

xβ
(1− cx

eαζ(β−1))
(
x
(

1− cζ(β−2)

eαζ(β−1)2

))
n−c > 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n

3
2 log n

if c > max

{
c

∣∣∣∣(1− cζ(β−2)
eαζ(β−1)2

)
ζ(β−2)− cζ(β−3)

eαζ(β−1)

ζ(β−1)− cζ(β−2)
eαζ(β−1)

< 1

}
.

Theorem 10 In a residual graph Gc of G(α,β) after degree-centrality attacks,

• The pairwise connectivity P is a.s. Θ(n2)

if x0 > min

{
x0

∣∣∣∣ 1
ζ(β−1)

(
∑x0
x=1

1

xβ−1)
2∑x0

x=1
1

xβ

> 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n

3
2 log n

if x0 < max
{
x0

∣∣∣ 1
ζ(β−1)

∑x0

x=1
1

xβ−2 < 1
}

.

Lemma 8 LetGcp be the residual graph ofG(α,β) only consisting of the protected degree-centrality
nodes (the nodes of degree larger than x0), we have

• The pairwise connectivity P is a.s. Θ(n2)

if x0 < max

{
x0

∣∣∣∣ 1
ζ(β−1)

(
∑∆
x=x0+1

1

xβ−1)
2∑∆

x=x0+1
1

xβ

> 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n

3
2 log n

if x0 > min
{
x0

∣∣∣ 1
ζ(β−1)

∑∆
x=x0+1

1
xβ−2 < 1

}
.

Theorem 11 In the residual graph Gs of G(α,β), the expected size of a connected component c̄ is

a.s. upper bounded by O
(
n

1
4

)
when d̃s < 1, that is, x0 < max

{
x0

∣∣∣ 1
ζ(β−1)

∑x0

x=1
1

xβ−2 < 1
}

.

29

2.3.2 Detailed Results for Hardness Complexity

In this task, we aimed to develop new embedding techniques for many classical problems to inves-
tigate whether the are remained in NP-complete even on power-law graphs.

Embedding techniques allow an original graph G to embed to a power-law graph Gp such that
a considered problem can be polynomially solved in Gp \G, thus preserving the complexity of the
problem on G to Gp. We developed two new techniques on optimal substructure problems, Cycle-
Based Embedding Technique and Graphic Embedding Technique, to embed a d-bounded graph
into a general power-law graph and a simple power-law graph respectively. Then we used these
two techniques to further proved the APX-hardness and the inapproximability of many classical
problems such as Minimum Dominating Set (MDS), Maximum Independent Set (MIS), Minimum
Dominating Set (MDS), Minimum Vertex Cover (MVC), Clique, Coloring, ρ-Minimum Dominat-
ing Set (ρ-MDS) on general power-law graphs and simple power-law graphs. These inapproxima-
bility results on power-law graphs are shown in Table 1.

Table 1: Inapproximability Factors on Power-Law Graphs with Exponential Factor β > 1

Problem General Power-Law Graph Simple Power-Law Graph
MIS 1 + 1

140(2ζ(β)3β−1)
− ε 1 + 1

1120ζ(β)3β
− ε

MDS 1 + 1
390(2ζ(β)3β−1)

1 + 1
3120ζ(β)3β

MVC, ρ-MDS 1 +
2(1−(2+oc(1)) log log c

log c)(
ζ(β)cβ+c

1
β

)
(c+1)

1 +
2−(2+oc(1)) log log c

log c

2ζ(β)cβ(c+1)

CLIQUE - O
(
n1/(β+1)−ε)

COLORING - O
(
n1/(β+1)−ε)

a Conditions: MIS and MDS: P6=NP; MVC, ρ-MDS: unique games conjecture; CLIQUE, COLORING: NP6=ZPP.

The inapproximablity results show that it is easier to find the solution for these problems on
PLNs than that of on the general graphs. The details of cycle-based embedding techniques and
graphic embedding technique can be found in [43, 45]. Here, we list the major theorems:

Theorem 12 (Cycle-Based Embedding Technique) Any d-bounded graph Gd can be embedded
into a power-law graph G(α,β) with β > 1 such that Gd is a maximal component and most optimal
substructure problems can be polynomially solvable on G(α,β) \Gd.

Lemma 9 Given a sequence of integers D = 〈d1, d2, . . . , dn〉 which is non-increasing, continu-
ous and the number of elements is at least as twice as the largest element in D, i.e. n ≥ 2d1,
it is possible to construct a simple graph G whose d-degree sequence is D in polynomial time
O(n2 log n).

Theorem 13 (Graphic Embedding Technique) Any d-bounded graph Gd can be embedded into
a simple power-law graph G(α,β) with β > 1 in polynomial time such that Gd is a maximal compo-
nent and the number of vertices in G(α,β) can be polynomially bounded by the number of vertices
in Gd.

30

2.3.3 Detailed Results for Approximation Algorithms

Due to the above results, we continued to develop a general approximation framework, called
Low-Degree Percolation (LDP), to approximate the optimization problems in power-law networks,
including MIS, MDS, and MVC problems. The idea of LDP framework is to percolate the graph
starting from a large number of low-degree nodes in a power-law graph, which allows us to develop
a theoretical framework, which can be used to analysis the approximation ratios via probabilistic
analysis.

In particular, we applied this theoretical framework to show the approximation ratios for these
problems on two well-known random power-law models as follows:

Theorem 14 (Main Theorem (MDS&MVC)) In a power-law graph G(α,β), by using LDP Algo-
rithm, MDS and MVC can be approximated into

1 + (Ψ− 1)λ

with probability at least 1 − pλ, where Ψ is the approximation ratio of MDS (or MVC) in general
graphs w.r.t. a graph of size at most eα

∑∆
i=2

1
iβ

.

Theorem 15 (Main Theorem (MIS)) In a power-law graphG(α,β), by using LDP Algorithm, MIS
can be approximated into

N + eα
(
λ
∑∆

i=2
1
iβ

)
N + 1

Ψ
eα
(
λ
∑∆

i=2
1
iβ

)
with probability at least 1 − pλ, where N is the number of nodes with degree 1, Ψ is the approxi-
mation ratio of MIS in general graphs w.r.t. a graph of size at most eα

∑∆
i=2

1
iβ

.

Theorem 16 In a Structural Random Power-Law (SRPL) GraphG, by using LDP Algorithm, MDS
and MVC can be approximated into

1 + (Ψ− 1)λ

with probability at least
beα/2c∑
τ=0

Pr[C2 = τ](1− pτλ)

where pτλ = 1
(λτ−µ(α,β,2))2

χ(α,β,2)
+1

in which λτ = λ+ τ∑∆
i=2

1

iβ

.

The major findings of this task include: (i) Developed an approximation algorithm framework,
called Low-Degree Percolation (LDP) Algorithm Framework, for solving Minimum Dominating
Set (MDS), Minimum Vertex Cover (MVC) and Maximum Independent Set (MIS) problems in
power-law graphs. (ii) Using this framework, we further showed a theoretical framework to derive
the approximation ratios for these optimization problems in two well-known random power-law
graphs. (iii) Our numerical analysis showed that, these optimization problems can be approximated
into near 1 factor with high probability, using our proposed LDP algorithms, in power-law graphs
with exponential factor β ≥ 1.5, which belongs to the range of most real-world networks. The
details of these findings can be found in [17].

31

In details, the approximation algorithm framework to solve optimization problems is based on
the degree sequence property in power-law graphs. As can be seen, the most fundamental property
of power-law graphs is that they contain a large number of low-degree nodes, while only a small
number of high-degree nodes. Therefore, the idea of our proposed Low-Degree Percolation (LDP)
algorithm framework is to sort the nodes by their degrees and percolate the graph from the nodes of
lowest degree. The process continues in residual graph iteratively until no more nodes, which are
surely in optimal solution, can be detected. At last, we applied existing approximation approaches
in the remaining graph.

For MDS and MVC problems, as shown in Algorithm 10, since the node incident to a node
of degree 1 certainly belongs to an optimal solution, we percolated the graph by adding all the
neighbors of nodes with degree 1 in each iteration. Until no more nodes of degree 1 exists in
residual graph, we applied existing approximation algorithm to obtain the solution in this residual
graph.

Algorithm 10: LDP Algorithm for MDS/MVC Problems
Input : Power-law graph G
Output: MDS (or MVC) S

1 while ∃ Nodes of degree 1 do
2 foreach Node v of degree 1 do
3 Add its neighbor N(v) into S;
4 Remove v from G;
5 end
6 Remove all nodes incident to S from graph G;
7 end
8 Determine the leftover MDS (or MVC) in G using existing approximation algorithm and

add them into S;
9 return S;

On the other hand, Algorithm 11 shows the algorithm for MIS. In this case, the nodes of degree
1 will belong to the optimal solution, and in the meanwhile, it is certain that their neighbors cannot
be in optimal solution any more. Therefore, in order to obtain MIS, we selected all nodes of degree
1 into the solution in each iteration and ran an existing approximation algorithm to obtain the MIS
in the remaining graph.

We have proved its approximation ratio in the following Theorems:

Theorem 17 (Main Theorem (MDS&MVC)) In a power-law graph G(α,β), by using Algorithm
10, MDS and MVC can be approximated into

1 + (Ψ− 1)λ

with probability at least 1 − pλ, where Ψ is the approximation ratio of MDS (or MVC) in general
graphs w.r.t. a graph of size at most eα

∑∆
i=2

1
iβ

.

And for the structural random power-law (SRPL) graph, we obtained the following results:

32

Algorithm 11: LDP Algorithm for MIS Problem
Input : Power-law graph G
Output: MIS S

1 while ∃ Nodes of degree 1 do
2 foreach Node v of degree 1 do
3 Add v into S;
4 Remove v and all its neighbors N(v) from G;
5 end
6 end
7 Determine the leftover MIS in G using existing approximation algorithm and add them

into S;
8 return S;

Theorem 18 In a SRPL graph G, by using Algorithm 10, MDS and MVC can be approximated
into

1 + (Ψ− 1)λ

with probability at least
beα/2c∑
τ=0

Pr[C2 = τ](1− pτλ)

where pτλ = 1
(λτ−µ(α,β,2))2

χ(α,β,2)
+1

in which λτ = λ+ τ∑∆
i=2

1

iβ

.

3 Training and Professional Development

3.1 Personnel Supported
This grant has partially supported the following personnel.

• PI: My T. Thai

• Ying Xuan (Ph.D, graduated in Fall 2011, currently is a Research Staff at IBM

• Thang N. Dinh (Ph.D, graduated in Spring 2013, currently is an Assistant Professor at Virginia
Commonwealth University)

• Yilin Shen (Ph.D, graduated in Spring 2013, currently is a Research Scientist at Samsung Amer-
ica, Research Center)

• Nam Nguyen (Ph.D, graduated in Spring 2013, currently is an Assistant Professor at Towson
University)

• Dung Nguyen (Ph.D, graduated in Summer 2013, currently is at Microsoft)

• MS Students: Yu-Song Syu (graduated in Spring 2012)

• Subhankar Mishra (current Ph.D. student, working towards his degree.)

33

3.2 Training
Several of my Ph.D students have been working with me on this project, thus it of course provides
them several advanced professional skills in doing research and their own professional develop-
ments as shown above. They have been trained to a new set of problems along with the developing
of several fundamental theories and algorithms. The results of these works have been included in
these PhD students’ dissertations (please see Appendix). Many of these students have obtained
either faculty positions or research staffs in the industry.

The students have attended several conferences to present their papers, such as IEEE INFO-
COM 2010, IEEE MILCOM 2011, ACM Mobicom 2011, COCOON 2011, IEEE SocialCom 2011,
IEEE INFOCOM 2011, ACM CIKM 2012, ACM HyperText 2012, ACM WebSci 2012, ACM
ICDM 2013, ACM ASONAM 2013, IEEE ICDCS 2013, IEEE GLOBECOM 2013, ACM WI
2014, and COCOON 2014.

Since the work is on the complex network, I have used several results here to offer a new
course, namely Optimization in Adaptive Complex Systems and Social Networks. This course is a
graduate level course, focusing on many problems arising in complex networks and systems, such
that vulnerability, cascading failures, complex network models.

3.3 Professional Development
During the period of this project, the PI is an associate editor for Journal of Combinatorial Opti-
mization, IEEE Transactions on Parallel and Distributed Systems, Journal of Discrete Mathemat-
ics, and optimization brief series editor for Springer. She is also a PC chair for several conferences,
including IEEE ISSPIT 2012, IEEE IWCMC 2012, SIMPLEX 2011.

DySON 14, CSoNets 13, IEEE IWCMC 12, IEEE ISSPIT 12, SIMPLEX 11, DIS 11, CO-
COON 10, CCNet 10

The PI is a co-founder and EiC of a new Springer journal, namely Computational Social Net-
works. She has created and chair a workshop on mathematics of social networks
(http : //www.cise.ufl.edu/m̃ythai/CSoNet.html), and has been a PC members of many con-
ferences, such as INFOCOM, SOCIALCOM, ICDCS. She is founding another workshop on inter-
dependent networks, co-located with the first rank conference IEEE Infocom 2015, namely WIDN
(pronounced as Widen). Information can be founded at http : //optnetsci.cise.ufl.edu/widn2015/

The PI has been given several invited talks and seminars, listed as follows:

• “Interdependent Networks Analysis,”, Learning and Intelligent Optimization Conference (LION
8), Feb 16-21, 2014, Florida. Tutorial Talk

• “Cybersecurity in an Era of Online Social Networks” Conference on Selected Problems on IT
and Telecommunication, Nov 14-15, 2013, Danang, Vietnam. Plenary Keynote

• “Dynamic Community Structure Analysis in Complex Networks,” the Int Conference on the
Dynamics of Information Systems, February 25-27, 2013. USA. Plenary Keynote

• “Community Structure Analysis in Dynamic Complex Networks” the 9th AIMS Conference
on Dynamic Systems, Differential Equations and Applications, July 1 - 5, 2012, USA. Invited
Speaker

34

• “How the Power-law Distribution Impacts on the Complex Network Vulnerability” Int Work-
shop on Complex Networks, March 7-9, 2012, USA. Invited Speaker

• “Optimally Use of Social Networks to Manipulate Information”, University of Texas Dallas,
Department of Computer Science, September 2011. Department Colloquium talk

4 Results Dissemination
We have disseminated the results in several avenues:

• Published the results in IEEE/ACM proceedings and journals

• Participated and presented our findings at conference meetings and seminars

• Provided source codes of our algorithms per requested from several research groups

• Developed two important interactive web-based tools which tremendously help the researchers
in the networking field to conduct their research based on community structure concepts.

1. Identify community structure. Complex networks exhibit a community structure prop-
erty, which is nodes within communities are densely connected than that between communities.
Identifying community structures is a central topic of network science. This research is of sig-
nificant importance as it provides insights into the functionality of a network and finds itself
extremely useful in deriving social-based solutions. My group has developed a web-based tool
which allows researchers to input any network of interests, and the tool will return a community
structure of this input. The tool also allows users to interactively rearrange these communities
for a better view.

2. Break community structure with the minimum cost. Researchers believed that commu-
nities are very strong and it is hard to be broken as they are densely connected. However, I have
shown that it is otherwise. In addition to the published theoretical results, I have developed an
online interactive tool for researchers to see how and where to break the communities. This tool
helps researchers gain an insight to the structure of studied networks in order to devise better
solutions to protect such networks.

5 Honors/Awards
• The PI is a recipient of NSF CAREER award 2010-2015.

• The PI received the Provost’s Excellence Award for Assistant Professors at the University of
Florida, 2010

• The PI has been early promoted to the rank of Associate Professor in 2010

• Ph.D students Yilin Shen and Thang Dinh have received UFIC Outstanding International Student
Awards

35

6 Dataset
We have evaluated our algorithms with various datasets, described in the following.

6.1 Critical Node Detections
The three networks which we use to evaluate the performance of our algorithms related to the
Critical Node Detection problem and its variants are described as follows:

• The real terrorist network compiled by Krebs with 62 nodes and 153 links, which reflects the
relationship between the terrorists involved in the terrorism attacks of Sep. 11, 2001. This
experiment attempts to evaluate the performance of HILPR on a real-world social network. In
order to breakdown the terrorist network, we can capture the individuals corresponding to the
critical nodes identified by HILPR.

• Waxman network topology, a widely-accepted Internet AS topological model, is generated by
the well-known BRITE.

• Power-law network topology, generated by Barabási graph generator

• Western States power network of the US with 4941 nodes and 6594 edges

• Small-world network topology generated by igraph library using Watts and Strogatz model, with
k = 2, µ = 0.2 and 70 nodes.

• US Network Assets compiled with 71 nodes and 98 edges, which provides the current customer
needs in XO Communications service.

• Erdos-Reyni: A random graph of 100 vertices and 200 edges following the Erdos-Reyni model.

• Forest fire: A random power-law graph following Forest fire model by Leskovec et al. with the
forward and backward burning probabilities 0.3 and 0.9, respectively.

• US Backbone network: The backbone cabling network of XO company.

• CAIDA AS: The CAIDA AS Relationships Dataset from Sep. 17, 2007.

• Oregon AS: AS peering information inferred from Oregon route-views between March 31 and
May 26, 2001. Only the largest connected component with 11,174 nodes and 23,410 links is
considered.

• Gnutella P2P: Gnutella peer-to-peer network from from Aug. 25, 2002. Nodes represents hosts
in the network and edges are the connections between the Gnutella hosts. It consists of 22,663
nodes and 108,386 edges

• Coauthor network in Physics sections of the e-print arXiv

• Partial Facebook with 63K nodes and 817K edges

• Orkut with 3M nodes and 223M edges

36

6.2 Network Structural Interdependency and Vulnerability Assessment
To detect and verify the community structures, we evaluated our algorithms in the following
dataset, described in the table.

Table 2: Order and size of network instances

ID Name Vertices (n) Edges (m)

1 Zachary’s karate club 34 78
2 Dolphin’s social network 62 159
3 Les Miserables 77 254
4 Books about US politics 105 441
5 American College Football 115 613
6 US Airport 97 332 2126
7 Electronic Circuit (s838) 512 819
8 Scientific Collaboration 1589 2742

We also evaluated them on the dataset of social networks as mentioned in the above section,
including Facebook, Twitter, Orkut, ENRON Email, ArXiv Citation,

7 Publications
1. Y. Shen and M. T. Thai, Vulnerability Assessment under Cascading Failures, in Proceedings of

the IEEE Global Communication Conference (GLOBECOM), 2013

2. Md A. Alim, A. Kuhnle, and M. T. Thai, Are Communities As Strong As We Think?, in Proceed-
ings of IEEE/ACM Int Conf on Advances in Social Networks Analysis and Mining (ASONAM),
2014.

3. S. Mishra, X. Li, M. T. Thai, and J. Seo, Cascading Critical Nodes Detection with Load Re-
distribution in Complex Systems, in Proceedings of the 8th Annual International Conference on
Combinatorial Optimization and Application (COCOA), 2014

4. S. Mishra, T. N. Dinh, M. T. Thai, and I. Shin, Optimal Inspection Points for Malicious At-
tack Detection in Smart Grids, in Proceedings of the 20th Int Computing and Combinatorics
Conference (COCOON), 2014

5. D. T. Nguyen, H. Zhang, S. Das, M. T. Thai, and T. N. Dinh, Least Cost Influence in Mul-
tiplex Social Networks: Model Representation and Analysis, in Proceedings of the IEEE Int
Conference on Data Mining (ICDM), 2013.

6. Md. A. Alim, N. P. Nguyen, T. N. Dinh, and M. T. Thai, Vulnerability Analysis of Overlapping
Communities in Complex Networks, in Proceedings of the 2014 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), 2014.

37

7. T. N. Dinh and M. T. Thai, Network under Joint Node and Link Attacks: Vulnerability Assess-
ment Methods and Analysis, IEEE Transactions on Networking (ToN), DOI: 10.1109/TNET.2014.2317486,
2014

8. N. P. Nguyen, T. N. Dinh, Y. Shen, and M. T. Thai, Dynamic Social Community Detection and
its Applications PLoS ONE 9(4): e91431. doi:10.1371/journal.pone.0091431, 2014.

9. T. N. Dinh, M. T. Thai, and H. Nguyen, Bound and Exact Methods for Assessing Link Vulnera-
bility in Complex Networks, Journal of Combinatorial Optimization (JOCO), vol. 28, no. 1, pp.
3-24, 2014

10. M. Hemmati, J.C. Smith, and M. T. Thai, A Cutting-plane Algorithm for Solving a Weighted
Influence Interdiction Problem, Computational Optimization and Applications, vol. 57, no. 1,
pp 71–104, 2014.

11. T. N. Dinh, N. P. Nguyen, M. A. Alim, and M. T. Thai, A Near-optimal Adaptive Algorithm for
Maximizing Modularity in Dynamic Scale-free Networks, Journal of Combinatorial Optimiza-
tion (JOCO), DOI:10.1007/s10878-013-9665-1, pp. 1-21, Oct 2013

12. H. Zhang, S. Mishra, M. T. Thai, Recent Advances in Information Diffusion and Influence
Maximization in Complex Social Networks, Opportunistic Mobile Social Networks, (J. Wu and
Y. Wang eds), CRC Press, Taylor & Francis Group, 2014

13. T. N. Dinh and M. T. Thai, Computing and Assessing All-pairs End-to-end Network Reliability,
manuscript, submitted to INFOCOM 2015

14. N. P. Nguyen, M. A. Alim, T. N. Dinh and M. T. Thai,A method to detect communities with sta-
bility in social networks, Social Network Analysis and Mining, Vol. 4, Issue 1, DOI: 10.1007/s13278-
014-0224-2, 2014.

15. N. P. Nguyen, Md. A. Alim, Y. Shen, and M. T. Thai, Assessing Network Vulnerability in a
Community Structure Point of View, in Proceedings of IEEE/ACM Int Conf on Advances in
Social Networks Analysis and Mining (ASONAM), 2013.

16. Y. Shen, D. T. Nguyen, Y. Xuan, and M. T. Thai, New Techniques for Approximating Optimal
Substructure Problems in Power-Law Graphs, Theoretical Computer Science (TCS), vol. 447,
2012.

17. Y. Shen, X. Li, and M. T. Thai, Approximation Algorithms for Optimization Problems in Ran-
dom Power-Law Graphs, COCOA, 2014

18. Y. Shen and M. T. Thai, Network Vulnerability Assessment under Cascading Failures, in Pro-
ceedings of the IEEE Global Communication Conference, (GLOBECOM), 2013

19. T. N. Dinh and M. T. Thai, Community Detection in Scale-free Networks: Approximation Algo-
rithms for Maximizing Modularity, IEEE Journal on Selected Areas in Communications: Spe-
cial Issue on Network Science (JSAC), vol. 31, no. 6, pp. 997–1006, June 2013.

20. M. T. Thai, R. Tiwari, R. Bose, and A. Helal, On Detection and Tracking of Variant Phenomena
Clouds, IEEE Transactions on Sensor Networks (ToSN), vol. 10, no. 2, 2013.

38

21. N. P. Nguyen, G. Yan, and M. T. Thai, Analysis of Misinformation Containment in Online Social
Networks, Elsevier Computer Networks-Towards a Science of Cyber Security (COMNETS),
vol. 57, no. 10, pp. 2133–2146, July 2013

22. T. N. Dinh, Y. Shen, D. T. Nguyen, and M. T. Thai, Cost-effective Viral Marketing for Time-
critical Campaigns in Large-scale Social Networks, IEEE/ ACM Transactions on Networking
(ToN),), vol. pp, no. 99, 2013

23. T. N. Dinh and M. T. Thai, Towards Optimal Community Detection: From Trees to General
Weighted Networks, Internet Mathematics, DOI:10.1080/15427951.2014.950875, 2014

24. H. Zhang, T. N. Dinh, and M. T. Thai, Maximizing the Spread of Positive Influence in Online
Social Networks, in Proceedings of the IEEE Int Conference on Distributed Computing Systems
(ICDCS), 2013.

25. Y. Shen, D. T. Nguyen, and M. T. Thai, Adaptive Approximation Algorithms for Hole Healing
in Hybrid Wireless Sensor Networks, in Proceedings of the IEEE Int Conference on Computer
Communications (INFOCOM), 2013

26. T. N. Dinh, N. P. Nguyen, and M. T. Thai, An Adaptive Approximation Algorithm for Commu-
nity Detection in Dynamic Scale-free Networks, in Proceedings of the IEEE Int Conference on
Computer Communications (INFOCOM) Mini-Conference, 2013.

27. T. N. Dinh, Y. Shen, and M. T. Thai, The Walls Have Ears: Optimize Sharing for Visibility and
Privacy in Online Social Networks, in Proceedings of ACM Int Conference on Information and
Knowledge Management (CIKM), 2012.

28. Y. Shen, T. N. Dinh, H. Zhang, and M. T. Thai, Interest-Matching Information Propagation in
Multiple Online Social Networks, in Proceedings of ACM Int Conference on Information and
Knowledge Management (CIKM), 2012

29. T. N. Dinh, Y. Shen, and M. T. Thai, An Efficient Spectral Bound for Link Vulnerability Assess-
ment in Large-scale Networks, IEEE MILCOM, 2012

30. Y. Shen, T. N. Dinh, and M. T. Thai, Adaptive Algorithms for Detecting Critical Links and
Nodes in Dynamic Networks, IEEE MILCOM, 2012

31. Y. Shen, T. Nguyen, and M. T. Thai, On the Discovery of Critical Nodes and Links for Assessing
Network Vulnerability, IEEE Trans on Networking, , IEEE Transactions on Networking (ToN),
vol. 21, no. 3, 2013

32. D. Nguyen, Y. Shen, and M. T. Thai, Detecting Critical Nodes in Interdependent Power Net-
works for Vulnerability Assessment, IEEE Trans on Smart Grid, vol. 4, no. 1, pp. 151–159,
2012

33. T. Dinh, Y. Shen, and M. T. Thai, On the Approximability of Positive Influence Dominating Set
in Complex Networks, Journal of Combinatorial Optimization, vol. 27, no. 3, pp. 487–503,
2014

39

34. T. N. Dinh, D. T. Nguyen, and M. T. Thai, A Unified Approach for Domination Problems on
Different Network Topologies, Handbook of Combinatorial Optimization, (P. Pardalos, D.-Z.
Du, and R. Graham eds), Springer Publisher, 2012

35. T. N. Dinh, D. T. Nguyen, and M. T. Thai, Cheap, Easy, and Massively Effective Viral Mar-
keting in Social Networks: Truth or Fiction?, ACM Conference on Hypertext and Social Media
(Hypertext), 2012.

36. D. T. Nguyen, N. P. Nguyen, and M. T. Thai, Sources of Misinformation in Online Social Net-
works: Who to Suspect?, IEEE MILCOM, 2012

37. Y. Shen, N. P. Nguyen, and M. T. Thai, Exploiting the Robustness on Power-Law Networks, Int
Computing and Combinatorics Conference (COCOON), 2011.

38. Y. Shen, N. Nguyen, and M. T. Thai, The Robustness of Power-Law Networks: Its Assessment
and Optimization, IEEE Trans on Reliability, accepted with revision, 2012

39. Y. Xuan, Y. Shen, and N. P. Nguyen, Efficient Multi-Link Failure Localization in All-Optical
Networks, IEEE Transactions on Communications (TCOM), vol. 61, no. 3, pp. 1144 – 1151,
2013

40. M. T. Thai and P. Pardalos (eds), Handbook of Optimization in Complex Networks: Theory and
Applications, Springer Publisher, 2011, ISBN: 978-1461407539

41. M. T. Thai and P. Pardalos (eds), Handbook of Optimization in Complex Networks: Communi-
cation and Social Networks, Springer Publisher, 2011, ISBN: 978-1461408567

42. M. T. Thai, T. N. Dinh, and Y. Shen, Hardness and Approximation of Network Vulnerability,
Handbook of Combinatorial Optimization, (P. Pardalos, D.-Z. Du, and R. Graham eds), Springer
Publisher, ISBN 978-1-4419-7996-4, 2013

43. Y. Shen, D. T. Nguyen, and M. T. Thai, Hardness Complexity of Optimal Substructure Prob-
lems on Power-Law Graphs, Handbook of Optimization in Complex Networks: Theory and
Applications, (M. T. Thai and P. Pardalos eds), Springer Publisher, 2011

44. N. P. Nguyen, Y. Xuan, and M. T. Thai, On Detection of Community Structure in Dynamic
Social Networks, Handbook of Optimization in Complex Networks: Communication and Social
Networks, (M. T. Thai and P. Pardalos eds), Springer Publisher, 2011

45. Y. Shen, D. T. Nguyen, and M. T. Thai, On the Hardness and Inapproximability of Optimiza-
tion Problems on Power Law Graphs, in Proceedings of the Int Conference on Combinatorial
Optimization and Applications (COCOA), 2010.

46. D. T. Nguyen, N. P. Nguyen, M. T. Thai, and S. Hela, Optimal and Distributed Algorithms for
Coverage Hole Healing in Hybrid Sensor Networks, International Journal of Sensor Networks
(IJSNet), vol. 11, no. 4, 2012

47. T. N. Dinh, Y. Xuan, M. T. Thai, P. Pardalos, and T. Znati, On New Approaches of Assessing
Network Vulnerability: Hardness and Approximation, IEEE/ACM Transactions on Networking
(ToN),), vol. 20, no. 2, pp. 609 – 619, 2012

40

48. Y. Xuan, Y. Shen, N. P. Nguyen, and M. T. Thai, A Trigger Identification Service for Defending
Reactive Jammers in WSN, IEEE Transactions on Mobile Computing (TMC), vol. 11, no. 5,
pp. 793–806, 2012

49. N. P. Nguyen and M. T. Thai, Finding Overlapped Communities in Online Social Networks
with Nonnegative Matrix Factorization, in Proceedings of the IEEE Military Communications
Conference (MILCOM), 2012

50. T. N. Dinh and M. T. Thai, Precise Structural Vulnerability Assessment via Mathematical Pro-
gramming, in Proceedings of the IEEE Military Communications Conference (MILCOM), 2011.

51. T. Dinh, Y. Xuan, and M. T. Thai, Towards Social-Aware Routing in Dynamic Communication
Networks, IPCCC 2010

52. T. Dinh, Y. Xuan, M. T. Thai, and T. Znati, On Approximation of New Optimization Methods
for Assessing Network Vulnerability, INFOCOM 2010

53. M. T. Thai and T. Dinh, Hardness and Approximation of Network Vulnerability, Handbook of
Combinatorial Optimization (D.-Z. Du, P. Pardalos, and R. Graham eds), Springer Publisher,
ISBN 978-1-4419-7996-4, 2013

54. N. Nguyen, Y. Xuan, and M. T. Thai, A Novel Method on Worm Containment on Dynamic
Social Networks, MILCOM 2010

55. Y. Xuan, Y. Shen, and M. T. Thai, A Graph-theoretic QoS Vulnerability Assessment for Network
Topologies, GLOBECOM 2010

56. N. P. Nguyen, T. N. Dinh, S. Tokala, and M. T. Thai, Overlapping Communities in Dynamic
Networks: Their Detection and Mobile Applications, in Proceedings of ACM International Con-
ference on Mobile Computing and Networking (MobiCom), 2011.

Appendix

41

COMMUNITY STRUCTURE AND ITS APPLICATIONS
IN DYNAMIC COMPLEX NETWORKS

By

NAM P. NGUYEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

c⃝ 2013 Nam P. Nguyen

2

ACKNOWLEDGMENTS

I would like express the deepest appreciation to my committee chair, Professor

My T. Thai for always being a great advisor of my Ph.D. journey. She continually and

convincingly conveyed a spirit of adventure in regard to research and scholarship, and

an excitement in regard to teaching. Her wisdom, support and advices have guided me

through all of my difficult moments, not only in doing research but also in my life. Without

her guidance and persistent help this dissertation would not have been possible. Also, I

am graceful to have excellent labmates who have provided extremely helpful resources

to my study.

I would like to thank my committee members, Professor Sanjay Ranka, Professor

Panos Pardalos, Professor Tamer Kahveci and Professor Prabhat Mishra who have

been very supportive to my dissertation. Their encouragement and advices have helped

me a lot not only in my Ph.D. study but also in my future career. Financial support for my

Ph.D. program was provided by the University of Florida, NSF CAREER Award Grant

number 0953284 and the DTRA Grant number HDTRA1-08-10.

3

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 3

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

CHAPTER

1 INTRODUCTION . 11

1.1 Community Detection in Dynamic Complex Networks 11
1.2 Nonnegative Matrix Factorization for Community Detection 12
1.3 Applications of The Network Community Structure 14
1.4 The Identification of Stable Communities 15
1.5 The Assessment of Network Community Structure Vulnerability 16
1.6 Literature Review . 17
1.7 Dissertation outline . 22

2 NONOVERLAPPING COMMUNITY STRUCTURE DETECTION 25

2.1 Problem Definition . 25
2.2 Algorithm Description . 26

2.2.1 New node . 28
2.2.2 New edge . 30
2.2.3 Node removal . 36
2.2.4 Edge removal . 36

2.3 Experimental Results . 41
2.3.1 Results on synthesized networks 42
2.3.2 Results on real-world traces . 44

3 OVERLAPPING COMMUNITY STRUCTURE DETECTION 51

3.1 Problem Formulation . 51
3.1.1 Basic notations . 51
3.1.2 Dynamic network model . 51
3.1.3 Density function . 52
3.1.4 Objective function . 53
3.1.5 Problem definition . 54

3.2 Basic Community Structure Detection . 54
3.2.1 Locating local communities . 55
3.2.2 Combining overlapping communities 58
3.2.3 Revisiting unassigned nodes . 60

3.3 Detecting Evolving Network Communities 61

4

3.3.1 Handling a new node . 63
3.3.2 Handling a new edge . 65
3.3.3 Removing an existing node . 67
3.3.4 Removing an edge . 68
3.3.5 Remarks . 70
3.3.6 Complexity . 70

3.4 Experimental Results . 71
3.4.1 Choosing the overlapping threshold β 73
3.4.2 Reference to static methods . 74
3.4.3 Reference to other dynamic methods 75

4 COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX
FACTORIZATION . 79

4.1 Problem Definition and Properties . 79
4.1.1 Motivation for NMF in community detection 79
4.1.2 Problem definitions . 81
4.1.3 Properties of iSNMF and iANMF factorizations 81

4.2 The Update Rule for iSNMF . 84
4.2.1 Multiplicative update rule . 84
4.2.2 Quasi-Newton method for iSNMF 88

4.3 Update Rules for iANMF . 89
4.3.1 Multiplicative update rules . 89

4.4 Experimental Results . 94
4.4.1 Empirical results on synthesized networks 95
4.4.2 Results on real networks . 100

5 SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS 102

5.1 A Message Forwarding and Routing Strategy Employing QCA 102
5.1.1 Setup . 103
5.1.2 Results . 105

5.2 A Message Forwarding and Routing Strategy Employing AFOCS 106
5.2.1 Message forwarding strategy . 106
5.2.2 Setup . 107
5.2.3 Results . 109

6 SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS 111

6.1 An Application of QCA in Containing Worms in OSNs 113
6.1.1 Setup . 113
6.1.2 Results . 115

6.2 Containing Worms with Overlapping Communities Detected by AFOCS . 118
6.2.1 Setup . 118
6.2.2 Results . 119

5

7 STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS 122

7.1 Basic Notations . 123
7.2 Link Stability Estimation . 124

7.2.1 Link reciprocity prediction . 125
7.2.2 Link stability estimation . 127

7.3 Stable Community Detection . 129
7.3.1 Lumped Markov chain . 129
7.3.2 Connection to the network topology 131
7.3.3 Detecting communities . 132

7.3.3.1 Formulation . 132
7.3.3.2 Resolution limit analysis 133
7.3.3.3 Connection to stability estimation 134
7.3.3.4 A greedy algorithm for SCD problem 135

7.4 Experimental Results . 137
7.4.1 Datasets . 137
7.4.2 Metric . 139
7.4.3 Effect of link stability estimation . 139
7.4.4 General community structure detection 141
7.4.5 Results on stable community detection 142

7.5 Conclusion . 144

8 ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY . . . 145

8.1 Introduction . 145
8.2 Problem Definition . 146
8.3 Analysis of NMI Measure . 148

8.3.1 NMI formulation . 148
8.3.2 Minimizing NMI in a disjoint community structure 150

8.3.2.1 Minimizing NMI within a community 150
8.3.2.2 Minimizing NMI in a general disjoint community structure 151

8.3.3 Minimizing NMI in an overlapped community structure 153
8.4 A Solution to CSV Problem . 154
8.5 Experimental Results . 158

8.5.1 Results on synthesized networks 161
8.5.1.1 Solution quality . 161
8.5.1.2 The number of communities and their sizes 163

8.5.2 Results on real-world traces . 164
8.6 An Application in DTNs . 167

9 CONCLUSIONS . 172

REFERENCES . 173

BIOGRAPHICAL SKETCH . 185

6

LIST OF TABLES

Table page

8-1 Statistic of social traces . 164

7

LIST OF FIGURES

Figure page

1-1 The general framework for our adaptive community detection algorithm A. . . . 13

1-2 The classification of community detection algorithms in complex networks. . . . 17

2-1 Possible behaviors of the network community structure during evolution. 28

2-2 NMI scores on synthesized networks with known communities 41

2-3 Modularity values on synthesized networks with known communities 42

2-4 Simulation results on Enron email network. 45

2-5 Simulation results on arXiv e-print citation network. 46

2-6 Simulation results on Facebook social network. 47

3-1 Overlapped v.s. non-overlapped community structures. 52

3-2 Locating and merging local communities. 55

3-3 A possible scenario when a new node is introduced. 63

3-4 Possible scenarios when a new edge is introduced. 65

3-5 Possible scenarios when an existing node is removed. 67

3-6 Possible scenarios when an existing edge is removed. 69

3-7 NMI scores for different values of β. N = 5000 (top), N = 1000 (bottom), µ =
0.1 (left), µ = 0.3 (right). 71

3-8 Comparison among AFOCS, COPRA and CFinder methods. N = 5000 (top),
N = 1000 (bottom), µ = 0.1 (left), µ = 0.3 (right). 72

3-9 Comparison among AFOCS, iLCD, FacetNet and OSLOM dynamic methods. . 76

3-10 The number of communities obtained by AFOCS, iLCD, FacetNet and OSLOM
and OSLOMs methods. 77

4-1 An illustrative example motivating NMF in community detection 80

4-2 The partial derivative matrix of HHT with respect to Hab. 85

4-3 The partial derivative matrix of HSHT with respect to Hab. 91

4-4 Normalized Mutual Information scores on synthesized networks 96

4-5 Number of communities on synthesized networks 97

8

4-6 Running Time on synthesized networks . 99

4-7 The number of communities, Internal density and Overlapping ratio of Enron
email and Facebook-like datasets . 100

5-1 Experimental results on the Reality Mining data set 104

5-2 Experimental results on the Reality Mining data set 108

6-1 A general worm containment strategy. 112

6-2 Infection rates on static network with k = 150 clusters 114

6-3 Infection rates on dynamic network with k = 200 clusters 115

6-4 OverCom patching scheme. 119

6-5 Infection rates between four methods. 120

7-1 Illustrations of stability function. 128

7-2 Results on synthesized networks with different community criteria. 138

7-3 Performance of SCD in detecting stable communities on real social traces. . . 140

8-1 Comparison among different node selection strategies on synthesized networks
with N = 2500 nodes . 159

8-2 Comparison among different node selection strategies on synthesized networks
with N = 5000 nodes . 160

8-3 Results obtained by AFOCS on networks with N = 2500 nodes and N = 2500
nodes. 162

8-4 NMI scores on Reality mining data, Foursquare and Facebook networks obtained
by AFOCS (k = 50...1000) . 165

8-5 Simulation results on HAGGLE dataset. 169

8-6 NMI measure on Haggle dataset. 170

9

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

COMMUNITY STRUCTURE AND ITS APPLICATIONS
IN DYNAMIC COMPLEX NETWORKS

By

Nam P. Nguyen

May 2013

Chair: My T. Thai
Major: Computer Engineering

In this dissertation, we focus on analyzing and understanding the organizational

principals, assessing the structural vulnerability as well as exploring practical applications

of dynamic complex networks. In particular, we propose two adaptive frameworks

for identifying the nonoverlapping and overlapping community structure in dynamic

networks. Our approaches have not only the power of quickly and efficiently updating

the network communities, but also the ability of tracing the evolution of those communities

over time. We also suggest a detection method based on nonnegative matrix factorization

which can work on weighted and directed networks. Consequently, we study the

discovery of stable communities in the networks, i.e., communities which are tightly

connected and remain wealthy even over a long period of time. Furthermore, we

investigate on the structural vulnerability of the network community structure via

identifying key nodes that play an important role in maintaining the normal function

of the whole system. This is a new research direction on the cyber-infrastructure that

we have recently introduced. To certify the effectiveness of our suggested frameworks

and algorithms, we extensively test them on not only synthesized networks but also

on real-world dynamic traces. Finally, we demonstrate the wide applicability of our

algorithms via realistic applications, such as the limiting misinformation spread in Online

Social Networks as well as the social-based forwarding and routing strategy and worm

containment in Mobile networks.

10

CHAPTER 1
INTRODUCTION

1.1 Community Detection in Dynamic Complex Networks

Many complex systems in reality exhibit the property of containing community

structure [37][85], i.e., they naturally divide into groups of vertices with denser

connections inside each group and fewer connections crossing groups, where vertices

and connections represent network users and their social interactions, respectively.

Members in each community of a social network usually share things in common such

as interests in photography, movies, music or discussion topics and thus, they tend to

interact more frequently with each other than with members outside of their community.

Community detection in a network is the gathering of network vertices into groups in

such a way that nodes in each group are densely connected inside and sparser outside.

It is noteworthy to differentiate between community detection and graph clustering.

These two problems share the same objective of partitioning network nodes into groups;

however, the number of clusters is predefined or given as part of the input in graph

clustering whereas the number of communities is typically unknown in community

detection. Detecting communities in a network provides us meaningful insights to

its internal structure as well as its organization principles. Furthermore, knowing the

structure of network communities could also provide us more helpful points of view to

some uncovered parts of the network, thus helps in preventing potential networking

diseases such as virus or worm propagation. Studies on community detection on static

networks can be found in an excellent survey [58] as well as in the work of [76][6][78][8]

and references therein.

Real-world complex networks, however, are not always static. In fact, most of

complex systems in reality (such as Facebook, Bebo and Twitter in OSNs) evolve and

witness an expand in size and space as their users increase, thus lend themselves to

the field of dynamic networks. A dynamic network is a special type of evolving complex

11

networks in which changes are frequently introduced over time. In the sense of an online

social network, such as Facebook, Twitter or Flickr, changes are usually introduced by

users joining in or withdrawing from one or more groups or communities, by friends and

friends connecting together, or by new people making friend with each other. Any of

these events seems to have a little effect to a local structure of the network on one hand;

the dynamics of the network over a long period of time, on the other hand, may lead to

a significant transformation of the network community structure, thus raises a natural

need of reidentification. However, the rapidly and unpredictably changing topology of a

dynamic social network makes it an extremely complicated yet challenging problem.

Although one can possibly run any of the static community detection methods,

which are widely available [76][6][78][17], to find the new community structure whenever

the network is updated, he may encounter some disadvantages that cannot be

neglected: (1) the long running time of a specific static method on large networks (2) the

trap of local optima and (3) the almost same reaction to a small change to some local

part of the network. A better, much efficient and less time consuming way to accomplish

this expensive task is to adaptively update the network communities from the previous

known structures, which helps to avoid the hassle of recomputing from scratch. This

adaptive approach is the main focus of our study in this paper. In Figure 1− 1, we briefly

generalize the idea of dynamic network community structure adaptation. Here, the

network evolves from time t to t + 1 under the change �Gt . The adaptive algorithm A

quickly finds the new community structure C(Gt+1) based on the previous structure C(Gt)

together with the changes �Gt .

1.2 Nonnegative Matrix Factorization for Community Detection

Community identification on complex networks is a well-established field and many

efficient graph-based methods have been introduced in the literature (see [32] for an

excellent survey). Unfortunately, these methods expose the strong dependence on some

local parts of the network topology as well as the implicit meaning and interpretation

12

:

:

Figure 1-1. The general framework for our adaptive community detection algorithm A.

from the detected overlapping communities. Recently, NMF-based algorithms for

detecting network communities have gained great attention due to its meaningful

interpretation [102]. In general, an NMF problem asks for, given a nonnegative matrix

X ∈ Rm×m and a number k ≪ min{m, n}, nonnegative matrices W ∈ Rm×k and

H ∈ Rk×n such that ||X −WH|| is minimized, where || · || is a cost function (usually

the Frobenius distance or I-divergence). One notable property of NMF is its close

relationship to K-mean clustering and graph partitioning [67][24], which also closely

relates to community identification.

A few attempts have been suggested on this line of method. Lin et al proposed

MetaFac [72], a NMF-based method for extracting community structure through

relational hypergraphs. This method, however, is not capable for identifying overlapped

structures. In [90], Prorakis et al. recently proposed an approach for finding overlapping

communities using a Bayesian NMF based on hyperparameters. This method has

the advantages of automatically determining the number of communities and not

suffering from the resolution limit. Unfortunately, its built-in estimate of the number of

communities could mislead the factorization to return a bad solution. In [103], Wang

et al. proposed NMF methods on the Frobenius norm with the capability of extracting

overlapped structures. However, we find these approaches do not appear to perform

well on weighted directed networks as shown in the experiments.

To overcome the above limitations, we introduce two NMF approaches, namely

iSNMF and iANMF, for effectively identifying social network communities with meaningful

13

interpretations. In particular, we are interested in approximating X ≈ HSHT since

this factorization provides us H as the community indicator matrix and S as the

community-interaction strength matrix, respectively. This factorization, as a result, nicely

reflects the overlap of network communities and promises a meaningful community

interpretation that is independent of the network topology.

1.3 Applications of The Network Community Structure

Detecting community structure of a dynamic social network is of considerable uses.

To give a sense of it, consider the routing problem in communication network where

nodes and links present people and mobile communications, respectively. Due to nodes

mobility and unstable links properties of the network, designing an efficient routing

scheme is extremely challenging. However, since people have a natural tendency

to form groups of communication, there exist groups of nodes which are densely

connected inside than outside in the underlying MANET as a reflection, and therefore,

forms community structure in that MANET. An effective routing algorithm, as soon as

it discovers the network community structure, can directly route or forward messages

to nodes in the same (or to the related) community as the destination. By doing this

way, we can avoid unnecessary messages forwarding through nodes in different

communities, thus can lower down the number of duplicate messages as well as reduce

the overhead information, which are essential in MANETs.

Another great example includes the worm containment in cellular networks [110],

or in OSNs [81][82]. Nowadays, many social applications such as Facebook, Twitter

and FourSquare, are able to run on open-API enabled mobile devices like PDAs and

Iphones. However, if such an application is infected with malicious software, such as

worms or viruses, this openness will also make it easier for their propagation. A possible

solution to prevent worms from spreading out wider is to send patches to critical users

and let them redistribute to the others. Intuitively, the smaller the set of important users

for sending patches, the better. But how can we effectively choose that set of minimal

14

size? This is where community structure comes into the picture and helps. In particular,

we show that selecting users in the boundaries of the overlapped nodes gives a tighter

and more efficient set of influential users, thus significantly lowers the number of sent

patches as well as overhead information, which are essential in cellular networks and

OSNs.

1.4 The Identification of Stable Communities

OSNs in reality are highly dynamic as social interactions on them tend to come and

go quickly. Consequently, their communities are also dynamical and evolve heavily as

the networks change over time. However, Palla et al. observe in their seminal work that

some communities in social networks are tightly connected and remain wealthy even

over a long period of time [86]. The authors also point out that large-size communities

with a high internal densities and less external distractions tend to remain stable during

the network evolution, which intuitively agree with the findings reported in [49]. These

observations reassemble the concept of stable communities in OSNs. For example,

stable communities on Facebook can be visualized as groups of users who devoted

themselves to one particular interest such as movie, music or photography. Likewise,

a stable community in Twitter can be illustrated via a group of users who may follow

many but only loyal to a specific celebrity. In a different perspective, stable communities

in a citation network may refer to well-established research topics in the field whereas

unstable communities may represent topical or recently arising research directions.

The discovery of these stable communities, as a consequence, will provide us

valuable insights into the core properties and characteristics of not only each community

but also of the network as a whole. This knowledge can further benefit information

retrieval in OSNs as searches can be redirected to stable communities sharing the

most similar characteristics to the queries for more meaningful answers. For instance,

the search for well-established research topics in a citation network can be mined

more effectively when one looks at its stable rather than unstable communities, as

15

discussed above. However, the large-scale and nonreciprocal topologies of OSNs in

reality make the detection of stable community structure an extremely challenging yet

topical problem.

1.5 The Assessment of Network Community Structure Vulnerability

Complex systems, despite their diversity in physical infrastructures and underlying

interactions, expose to be extremely vulnerable under node attacks. In some scenarios,

the failures of only a few key nodes are enough to bring the whole network operation

down to its knees [25]. More importantly, this vulnerability can further be propagated

to a wider population, leading to a much more devastating consequence. In order to

develop a comprehensive understanding on this type of attack, it is therefore important

to understand not only the impact of nodes’ failures on the network components but also

the inner and interdependency among those components [88]. Particularly, it is crucial

to explore how the failure of a single node, or a set of nodes in general, can significantly

change the structure of the network components as well as how these components

would affect each other in cases of attacks. However, the large scale and dynamical

properties of complex systems in practice make this a complicated problem.

To tackle this problem, we introduce the use of network modules to study both

the impact of nodes’s failures and the network component interdependency. There

are several reasons and benefits behind this approach. First of all, investigating the

interdependencies based on the topology of the underlying network structures is a major

aspect that must be considered to understand the behavior of structural vulnerability

[88]. Secondly, most complex networks commonly exhibit modular property, or in other

words, they exhibit to contain community structure in their underlying organizations.

That is, the network nodes can be gathered into groups in such a way that each group

is densely connected internally and sparsely connected externally [38][75]. Nodes in

each community usually share similar functions and characteristics that distinguish

themselves from the others. In a broader view, communities displays the whole network

16

Static Algorithms Dynamic Algorithms

Disjoint CS

Overlapping CS

Weighted NW

Unweighted NW

Weighted NW

Unweighted NW

Undirected NW Directed NW Undirected NW Directed NW

1

5

9

13

2 3 4

6

10

14

7

11

15

8

12

16

Figure 1-2. The classification of community detection algorithms in complex networks.

structure as a compact and more understandable level where a community may

represent an entity or a functional group in the system. At this level, element failures

in one community can have a profound impact which can consequently lead to changes

of other communities. Therefore, identifying network elements that are essential to its

community structure is a fundamental and extremely important issue. To the best of our

knowledge, this research direction has not been addressed so far in the literature.

1.6 Literature Review

Community detection in dynamic networks

Community detection in complex networks is a well established field and a

tremendous number of identification methods has been proposed in the literature.

Some notable approach directions include classical graph clustering algorithms [4][73],

dynamic approaches [92], modularity optimization methods [75], statistical inference

[79] or random walk for community detection [28] (see [32] and references therein for an

excellent survey).

In a general view, community structure detection algorithms for complex network

can be classified in different ways: either by nonoverlapping or overlapping detection

17

algorithms, by static or dynamic algorithms, or by algorithms for directed and undirected

networks, etc. Figure 1-2 describes a details classification of 16 different types of

identification algorithms.

Community detection on static networks has attracted a lot of attentions and many

efficient methods have been proposed for this type of networks. Detecting community

structure on dynamic networks, however, has so far been an untrodden area. A recent

work of Palla et al. [85] proposed an innovative method for detecting communities on

dynamic networks based on the k-clique percolation technique. This approach can

detect overlapping communities; however, it is time consuming, especially on large

scale networks. Another recent work of Zhang et al. [109] proposed a detection method

based on contradicting the network topology and the topology-based propinquity, where

propinquity is the probability of a pair of nodes involved in a community. A work in [98]

presented a parameter-free methodology for detecting clusters on time-evolving graphs

based on mutual information and entropy functions of Information Theory. Hui et al. [48]

proposed a distributed method for community detection in which modularity was used

as a measure instead of objective function. A part from that, [44] attempted to track the

evolving of communities over time, using a few static network snapshots.

In [99], the authors present a framework for identifying dynamic communities with

a constant factor approximation. However, this method does not seem to make sense

on real-world social networks since it requires some predefined penalty costs which are

generally unknown on dynamic networks. A recent work [26], Thang et al. proposed a

social-aware routing strategy in MANETs which also makes uses of a modularity-based

procedure name MIEN for quickly updating the network structure. In particular, MIEN

tries to compose and decompose network modules in order to keep up with the changes

and uses fast modularity algorithm [76] to update the network modules. However, this

method performs slowly on large scale dynamic networks due to the high complexity of

[76].

18

In [70], Lin et al. proposed FacetNet, a framework for analyzing communities in

dynamic networks based on the optimization of snapshot costs. FacetNet is guaranteed

to converge to a local optimal solution; however, its convergence speed is slow and

its input asks for the number of network communities which are usually unknown

in practice. In [27], Duan et al. proposed Stream-Group, an incremental method

to solve the community mining and detect the change points in weighted dynamic

graphs. This method is modularity-based thus may inherit the resolution limit while

discovering network communities. In another attempt, Kim et al. [52] suggested a

particle-and-density based clustering method for dynamic networks, based on the

extended modularity and the concepts of nano-community and l-quasi-clique-by-clique.

Apart from that, the work of Cazabet et al. [9] proposed iLCD method to find the

overlapping network communities by adding edges and then merging similar ones.

However, this model might not be sufficient in consideration with the dynamic behaviors

of the network when new nodes are introduced or removed, or when existing edges

are removed from the network. In [60], the author presented OSLOM, a framework for

testing the statistical significance of a cluster with respect to a global null model (e.g., a

random graph). To expand a community, OSLOM locally computes the value r for each

neighbor node and tries to include that node into the current community.

Nonnegative matrix factorization for community detection

Community detection on complex networks is a mature research area and besides

NMF-based algorithms, many effective graph-based or topology-based algorithms

have been proposed for this purpose. In general, detection methods can be classified

into non-overlapping (disjoint) and overlapping algorithms. Traditional non-overlapping

algorithms [75][17][77] may return good community identification results, however are

not able to reveal the overlapped network structures, particularly on social networks.

On the other category, algorithms for graph-based and topological-based detection

of overlapping communities have also been proposed in the literature. Most of them

19

are based on the clique-percolation [84] or clique extension [63] techniques, on the

extended modularity [62][83], on a specific fitness function [56], on label propagation

[40], or link-based technique [1]. See [32] and references therein for an excellent survey

on those detection methods.

Although the success of these aforementioned algorithms have been theoretically

and empirically verified, they still expose the following limitations: (1) The strong

dependence on some local parts of the network topology, e.g., the clique-percolation

method depends on some dense subnetworks in order to percolate, a link-based

technique relies on potential links with highest degrees, a modularity-based technique

depends on the network hierarchy in order to maximize modularity, etc, and (2) The

implicit meaning and interpretation from the detected overlapping communities, e.g.,

what is the contribution of an overlapped node to these percolated-cliques or why would

it even be there? These shortcomings of these methods drive the need for a better

approach with a more meaningful interpretation.

Stable community detection

The discovery of stable communities, on the contrary, is still an untrodden area

with only a few attempts has been suggested [23][59][68]. This special property of

network communities was perhaps first observed by Palla et al. in his seminal work [86],

where they point out that tight-knit communities with high internal densities and less

external distractions tend to remain strong over time, thereby reassembles the concept

of community stability. Delvenne et al. [23] extend this general concept to proposed

an measure, called “stability of the clustering r(t,H)”, to quantify how stable a given

cluster (or community structure) H is at a specific time step t based on the Markov

Autocovariance model. Under this notation, a cluster H is stable at time t if a high value

of r(t,H) is observed. This quantity, instead, is more appropriate for verification rather

than identification of stable network communities since it requires the specification of

time step t a prior.

20

In a different approach, Lancichinetti et al. [59] investigate on the consensus of

community detection methods. The authors report that, given a particular algorithm

A, the consensus on communities found by A after multiple runs dramatically improve

the quality of the detection, henceforth suggest that those communities are candidates

for stable structures. This is a very interesting approach, however, might encounter

some disadvantages of (1) the expensive computational cost and time consuming,

and (2) the convergence of the whole iterative process is not guaranteed. In a

recent attempt, Yanhua et al. [68] utilize the concept of mutual links and suggest an

spectral-clustering-based identification method that tries to maximize the total mutual

connections in order to find stable communities. However, there are possibilities that

some mutual links are of low magnitudes, and thus, do not significantly contribute to the

overall stability at the community level.

Structural vulnerability assessment of community structure

Community structure and complex network vulnerability are the two major and

well-developed areas of networking research. Surveys on community structure

detection algorithms as well as methods for assessing network vulnerabilities can

be found in the work of Fortunatos et. al. [32], and Grubesic et. al. [41], respectively.

However, assessing the vulnerability of network community structure has so far been an

untrodden area. A large body of work has been devoted to find the node roles within a

community by a link-based technique together with a modification of node degree [95],

by using the spectrum of the graph [105], by using a within-module degree and their

participation coefficient [42], or by the detection of key nodes, overlapping communities

and “date” and “party” hubs [54]. However, none of these approaches discuss how the

community structure would change in the failure of those important nodes, especially in

terms of NMI measure.

The vulnerability of network function and structure has been examined under the

node centrality metrics, such as high degree and betweeness centrality, as well as

21

under the average shortest path which tries to signify the lengths of shortest distances

between node pairs [41], under the pairwise connectivity metric whose goal aims to

break the network’s pairwise connectivity down to a certain level [25], or under the

available number of compromised s − t flows [74], etc. However, there is an even more

crucial risk that could dramatically affect the normal network functionality that has not

been addressed so far: the transformation or restruction of the network community

structure. Due to its vital role in the network, any significant restruction or transformation

of the community structure, resulted from important node removal, can potentially

change the entire network organization and consequently lead to a malfunction or

unpredictable corruption of the whole network.

1.7 Dissertation outline

In chapter 2, we propose QCA, a fast and adaptive method for efficiently identifying

the nonoverlapping community structure of a dynamic social network. Our approach

takes into account the discovered structures and processes on network changes

only, thus significantly reduces computational cost and processing time. We study the

dynamics of a social network and prove theoretical results regarding its communities’

behaviors over time, which are the bases of our method. We extensively evaluate our

algorithms on both synthesized and real dynamic social traces. Experimental results

show that QCA achieves not only competitive modularity scores but also high quality

community structures in a timely manner. We apply QCA method to worm containment

problem in OSNs. Simulation results show that QCA outperforms current available

methods and confirm its applicability in social network problems.

In chapter 3, we suggest AFOCS, a two-phase adaptive framework for not only

detecting and updating the overlapping network communities but also tracing their

evolution over time. Theoretical analyses show AFOCS partially achieves more than

74% the internal density of the optimal solution. Second, we evaluate AFOCS on

both synthesized and real traces in comparison to both the state-of-the-art and the

22

most popular static detection methods COPRA and CFinder, as well as to recent

adaptive methods FacetNet, iLCD and OSLOM. Empirical results show that AFOCS

achieves both competitively results and high quality community structures in a timely

manner. Finally, with AFOCS, we suggest a community based forwarding strategy for

communication networks that reduces up to 11x overhead information while maintaining

competitively delivery time and ratio. We also propose a new social-aware patching

scheme for containing worms in OSNs, which helps reducing up to 7x the infection rates

on Facebook dataset.

We analyze two NMF approaches in chapter 4, namely iSNMF and iANMF, for

effectively identifying social network communities with meaningful interpretations.

In particular, we are interested in approximating X ≈ HSHT since this factorization

provides us H as the foundation feature matrix and S as the feature interaction

matrix. Alternatively, H and S can also be thought of as community indicator and

inter-community strength matrices whose row elements can further be interpreted

as probabilities of nodes belonging to different communities. This factorization, as a

result, nicely reflects the overlap of network communities and promises a meaningful

community interpretation that is independent of the network topology.

In an application perspective, we illustrate the practical applications of the network

community structure via two emerging problems on social and mobile computing,

namely the Worm spread containment problem on online social networks (chapter

5) and the forwarding and routing strategy (chapter 6) on mobile networks. We

demonstrate that methods and strategies employing QCA and FOCS as community

detection cores obtain a significant improvement in term of performance and solution

quality. These realistic applications brighten the wide applicability of the network

community structure many problems enabled my complex networks.

In chapter 7, we suggest an estimation which provides helpful insights into the

stability of links in the input network. Based on that, we propose SCD - a framework

23

to identify community structure in directional OSNs with the advantage of community

stability. We next explore an essential connection between the persistence probability

of a community at the stationary distribution and its local topology, which is the

fundamental mathematical theory to support the SCD framework. To certify the

efficiency of our approach, we extensively test SCD on both synthesized datasets

with embedded communities and real-world social traces, including NetHEPT and

NetHEPT WC collaboration networks as well as Facebook social networks, in reference

to the consensus of other state-of-the-art detection methods. Highly competitive

empirical results confirm the quality and efficiency of SCD on identifying stable

communities in OSNs.

In chapter 8, we introduce CSV problem to assess the impact of nodes’ failures

on the network community structure. To the best of our knowledge, this is the first

attempt in this line of research. We analyze possible conditions that can lead to the

minimization of NMI on network community structures. We suggest the concept

of generating edges of a community and provide an optimal solution for finding a

MGES. We propose genEdge, a node selection strategy for CSV based on the MGES

solution. We conducted experiments on both synthesized data with known community

structures and real world traces. Empirical results reveal that genEdge outperforms

other node selection strategies in terms of solution quality as well as in reference to

different underlying community detection algorithms. In an application perspective, we

demonstrate the critical importance of CSV via the forwarding and routing strategies

in delay tolerant networks (DTNs), where the failures of some important devices

significantly degrade the entire system’s performance.

Finally, we summary our contributions and conclude the dissertation in chapter 9.

24

CHAPTER 2
NONOVERLAPPING COMMUNITY STRUCTURE DETECTION

In this chapter, we present QCA, our proposed algorithms for detecting nonoverlapping

community structure in a dynamic complex network. In the following sections, we first

introduce the preliminaries in section 2.1 and then describe our QCA method in detail

in section 2.2. Finally, the empirical evaluations of QCA on both synthesized and real

datasets are presented in section 2.3.

2.1 Problem Definition

We first present the notations, objective function as well as the dynamic graph

model representing a social network that we will use throughout this section.

(Notation) Let G = (V ,E) be an undirected unweighted graph with N nodes and

M links representing a social network. Let C = {C1,C2, ..,Ck} denote a collection of

disjoint communities, where Ci ∈ C is a community of G . For each vertex u, denote by

du, C(u) and NC(u) its degree, the community containing u and the set of its adjacent

communities. Furthermore, for any S ⊆ V , let mS , dS and euS be the number of links

inside S , the total degree of vertices in S and the number of connections from u to S ,

respectively. The pairs of terms community and module; node and vertex as well as

edge and link and are used interchangeably.

(Dynamic social network) Let G s = (V s ,E s) be a time dependent network

snapshot recorded at time s. Denote by �V s and �E s the sets of vertices and links

to be introduced (or removed) at time s and let �G s = (�V s , �E s) denote the change in

term of the whole network. The next network snapshot G s+1 is the current one together

with changes, i.e., G s+1 = G s ∪ �G s . A dynamic network G is a sequence of network

snapshots evolving over time: G = (G 0,G 1, ..,G s).

(Objective function) In order to quantify the goodness of a network community

structure, we take into account the most widely accepted measure called modularity Q

25

[78], which is defined as:

Q =
∑
C∈C

(mC

M
− d2

C

4M2

)
.

Basically, Q is the fraction of all links within communities subtracts the expected value

of the same quantity in a graph whose nodes have the same degrees but links are

distributed randomly, and the higher modularity Q, the better network community

structure is. Therefore, our objective is to find a community assignment for each

vertex in the network such that Q is maximized. Modularity, just like other quality

measurements for community identifications, has some certain disadvantages such as

its non-locality and scaling behavior [8], or resolution limit [35]. However, it is still very

well considered due to its robustness and usefulness that closely agree with intuition on

a wide range of real world networks.

Problem Definition: Given a dynamic social network G = (G 0,G 1, ..,G s) where G 0 is

the original network and G 1, G 2,.., G s are the network snapshots obtained through �G 1,

�G 2,.., �G s , we need to devise an adaptive algorithm to efficiently detect and identify

the network community structure at any time point utilizing the information from the

previous snapshots as well as tracing the evolution of the network community structure.

2.2 Algorithm Description

Let us first discuss how changes to the evolving network topology affect the

structure of its communities. We use the term intra-community links to denote edges

whose two endpoints belong to the same community, and the term inter-community links

to denote those with endpoints connecting different communities. For each community

C , the connections linking C with other communities are much fewer than those within C

itself, i.e., nodes in C are densely connected inside and less densely connected outside.

Intuitively, adding intra-community links inside or removing inter-community links

between communities of G will strengthen those communities and make the structure of

G more clear. Vice versa, removing intra-community links and inserting inter-community

links will loosen the structure of G . The community updating process, as a result, is

26

challenging since an insignificant change in the network topology can possibly lead to an

unexpected transformation of its community structure.

We will discuss in detail possible behaviors of dynamic network communities in

Figure 2-1. 2-1A: New edge (u, v): u and v are first checked and memberships are

then tested on X and Y . 2-1B: (a) The original community (b) After the dotted edge is

removed, two smaller communities arise. 2-1C: (a) The original four communities (b)

After the central node is removed, the leftover nodes join in different modules, forming

three new communities. 2-1D: (a) The original community (b) When g is removed, a

3-clique is placed at a to discover b, c , d and e. f assigned singleton afterwards.

In order to reflect changes introduced to the social network, its underlying graph is

constantly updated by either inserting or removing a node or a set of nodes, or by either

introducing or deleting an edge or a set of edges. In fact, the introduction or removal of a

set of nodes (or edges) can be decomposed as a sequence of node (or edge) insertions

(or removals), in which a single node (or a single edge) is introduced (or removed) at a

time. This observation helps us to treat network changes as a collection of simple events

where a simple event can be one of newNode, removeNode, newEdge, removeEdge

whose details are as follow:

• newNode (V ∪ {u}): A new node u with its associated edges are introduced. u
could come with no or more than one new edge(s).

• removeNode (V \{u}): A node u and its adjacent edges are removed from the
network.

• newEdge (E ∪ {e}): A new edge e connecting two existing nodes is introduced.

• removeEdge (E\{e}): An existing edge e in the network is removed.

Our approach first requires an initial community structure C0, which we call the

basic structure, in order to process further. Since the input model is restricted as an

undirected unweighted network, this initial community structure can be obtained by

performing any of the available static community detection methods [76][6][17]. To

27

A B

C

D

Figure 2-1. Possible behaviors of the network community structure during evolution.

obtain a good basic structure, we choose the method proposed by Blondel et al. in [6]

which produces a good network community structure in a timely manner [58].

2.2.1 New node

Let us consider the first case when a new node u and its associated connections

are introduced. Note that u may come with no adjacent edges or with many of them

connecting one or more communities. If u has no adjacent edge, we create a new

community for it and leave the current structure intact. The interesting case happens,

and it usually does, when u comes with edges connecting one or more existing

28

communities. In this latter situation, we need to determine which community u should

join in in order to maximize the gained modularity. There are several local methods

introduced for this task, for instance the algorithms of [76][17]. Our method is inspired by

a physical approach proposed in [107], in which each node is influenced by two forces:

FC
in (to keep u stays inside community C) and FC

out (the force a community C makes in

order to bring u to C) defined as follow:

FC
in (u) = euC −

du(dC − du)

2M
,

and

F S
out(u) = max

S∈NC(u)

{
euS −

dudoutS

2M

}
,

where doutS is of opposite meaning of dS .

Taking into account the above two forces, a node v can actively determines its

best community membership by computing those forces and either lets itself join the

community S having the highest F S
out(v) (if F S

out(v) > F
C(v)
in (v)) or stays in the current

community C(v) otherwise. By Theorem 2.1, we bridge the connection between those

forces and the objective function, i.e., joining the new node in the community with the

highest outer force will maximize the local gained modularity. The process is presented

in Alg. 1.

Theorem 2.1. Let C be the community having the maximum FC
out(u) when a new node u

with degree p is added to G , then joining u in C gives the maximal gained modularity.

Proof. Let D be a community of G and D ̸= C , we show that joining u in D contributes

less modularity than joining u in C . The overall modularity Q when u joins in C is

Q1 =
mC + euC
M + p

− (dC + euC + p)2

4(M + p)2
+

mD

M + p
− (dD + euD)

2

4(M + p)2
+ A,

29

Algorithm 1 New Node
Input: New node u with associated links; Current structure Ct .
Output: An updated structure Ct+1

1: Create a new community of only u;
2: for v ∈ N(u) do
3: Let v determine its best community;
4: end for
5: for C ∈ NC(u) do
6: Find FC

out(u);
7: end for
8: if maxC F

C
out(u) > FCu

in (u) then
9: Let Cu ← argmaxC {FC

out(u)};
10: Update Ct+1 : Ct+1 ←

(
Ct\Cu

)
∪
(
Cu ∪ u

)
;

11: end if

where A is the summation of other modularity contributions. Similarly, joining u to D

gives

Q2 =
mC

M + p
− (dC + euC)

2

4(M + p)2
+
mD + euD
M + p

− (dD + euD + p)2

4(M + p)2
+ A,

and

Q1 −Q2 =
1

M + p

(
euC − euD +

p(dD − dC + euD − euC)

2(M + p)

)
.

Now, since C is the community that gives the maximum FC
out(u), we obtain

euC −
p(dC + euC)

2(M + p)
> euD −

p(dD + euD)

2(M + p)
,

which implies

euC − euD +
p(dD − dC + euD − euC)

2(M + p)
> 0.

Hence, Q1 −Q2 > 0 and thus the conclusion follows.

2.2.2 New edge

When a new edge e = (u, v) connecting two existing vertices u, v is introduced,

we divide it further into two subcases: e is an intra-community link (totally inside a

community C) or an inter-community link (connects two communities C(u) and C(v)).

If e is inside a community C , its presence will strengthen the inner structure of C

30

according to Lemma 1. Furthermore, by Lemma 2, we know that adding e should not

split the current community C into smaller modules. Therefore, we leave the current

network structure intact in this case.

The interesting situation occurs when e is a link connecting communities C(u) and

C(v) since its presence could possibly make u (or v) leave its current module and join

in the new community. Additionally, if u (or v) decides to change its membership, it can

advertise its new community to all its neighbors and some of them might eventually want

to change their memberships as a consequence. By Lemma 3, we show that should u

(or v) ever change its community assignment, C(v) (or C(u)) is the best new community

for it. But how can we quickly decide whether u (or v) should change its membership

in order to form a better community structure with higher modularity? To this end, we

provide a criterion to test for membership changing of u and v in Theorem 2.2. Here, if

both �qu,C ,D and �qv ,C ,D fail to satisfy the criteria, we can safely preserve the current

network community structure (Corollary 1). Otherwise, we move u (or v) to its new

community and consequently let its neighbors determine their best modules to join in,

using local search and swapping to maximize gained modularity. Figure 2-1A describes

the procedure for this latter case. The detailed algorithm is described in Alg. 2.

Lemma 1. For any C ∈ C, if dC ≤ M − 1 then adding an edge within C will increase its

modularity contribution.

Proof. The portion Q1 that community C contributes to the overall modularity Q is

Q1C =
mC

M
− d2

C

4M2
.

When a new edge coming in, the new modularity Q2 is

Q2C =
mC + 1

M + 1
− (dC + 2)2

4(M + 1)2
.

31

Algorithm 2 New Edge
Input: Edge {u, v} to be added; Current structure Ct .
Output: An updated structure Ct+1.

1: if (u and v /∈ V) then
2: Ct+1 ← Ct ∪ {u, v};
3: else if C(u) ̸= C(v) then
4: if �qu,C(u),C(v) < 0 and �qv ,C(u),C(v) < 0 then
5: return Ct+1 ≡ Ct ;
6: else
7: w = argmax{�qu,C(u),C(v), �qv ,C(u),C(v)};
8: Move w to the new community;
9: for t ∈ N(w) do

10: Let t determine its best community;
11: end for
12: Update Ct+1;
13: end if
14: end if

Now, taking the difference between Q2 and Q1 gives

�QC = Q2C −Q1C

=
4M3 − 4mCM

2 − 4dCM
2 − 4mCM + 2d2

CM + d2
C

4(M + 1)2M2

≥ 4M3 − 6dCM
2 − 2dCM + 2d2

CM + d2
C

4(M + 1)2M2
(since mC ≤ dC

2
)

≥ (2M2 − 2dCM − dC)(2M − dC)

4(M + 1)2M2
≥ 0

The last inequality holds since dC ≤ M − 1 implies 2M2 − 2dCM − dC ≥ 0.

Lemma 2. If C is a community in the current snapshot of G , then adding any intra-

community link to C should not split it into smaller modules.

Proof. Assume the contradiction, i.e, C should be divided into smaller modules when

an edge is added into it. Let X1,X2, ..,Xk be disjoint subsets of C representing these

modules. Let di and eij be the total degree of vertices inside Xi and the number of links

going from Xi to Xj , respectedly. Assume that, W.L.O.G., when an edge is added inside

32

C , it is added to X1. We will show that∑
i ̸=j didj

2M
<
∑
i ̸=j

eij <

∑
i ̸=j didj

2M
+ 1,

which can not happen since
∑

i ̸=j eij is an natural number. Recall that

Q1C =
mC

M
− d2

C

4M2
,

and

QXi
=

mi

M
− d2

i

4M2
,

and prior to adding an edge to C , we have

Q1C >

k∑
i=1

QXi
,

or equivalently,
mC

M
− d2

C

4M2
>

k∑
i=1

(mi

M
− d2

i

4M2

)
.

Since X1,X2, ..,Xk are disjoint subsets of C , it follows that

dC =

k∑
i=1

di

and

mC =

k∑
i=1

mi +
∑
i<j

eij ,

(where mi is the number of links inside Xi). The above inequality equals to

mC

M
−

k∑
i=1

mi

M
>

d2
C

4M2
−

k∑
i=1

d2
i

4M2
,

or ∑
i<j

eij >

⌈∑
i<j didj

2M

⌉
.

Now, assume that the new edge is added to X1 and C is split into X1,X2, ..,Xk which

implies that dividing C into k smaller communities will increase the overall modularity,

33

i.e.,

Q2C <
k∑
i=1

Q2Xi
.

Now,

Q2C <
k∑
i=1

Q2Xi

⇔
∑k

i=1mi +
∑

i<j eij + 1

M + 1
−
(∑k

i=1 di + 2
)2

4(M + 12)
<

m1 + 1

M + 1
− (d1 + 2)2

4(M + 1)2
+

k∑
i=2

(mi

M + 1
− d2

i

4(M + 1)2
)

⇔
∑k

i=1mi +
∑

i<j eij + 1

M + 1
−
(∑k

i=1 di + 2
)2

4(M + 12)
<

∑k

i=1mi + 1

M + 1
− (d1 + 2)2

4(M + 1)2
−

k∑
i=2

d2
i

4(M + 1)2

⇔
∑
i<j

eij <

∑k

i=1 di − 2d1 +
∑

i<j didj

2(M + 1)

Moreover, since it is obvious that
∑k

i=1 di − 2d1 < 2M, we have∑k

i=1 di − 2d1 +
∑

i ̸=j didj

2(M + 1)
<

⌈∑
i<j didj

2M

⌉
+ 1,

and thus the conclusion follows.

Lemma 3. When a new edge (u, v) connecting communities C(u) and C(v) is in-

troduced, C(v) (or C(u)) is the best candidate for u (or v) if it should ever change its

membership.

Proof. Let C ≡ C(u) and D ≡ C(v). Recall the outer force that a community S applies

to vertex u is

F S
out(u) = eSu −

dudoutS

2M
.

We will show that the presence of edge (u, v) will strengthen FD
out(u) while weakening

the other outer forces F S
out(u), i.e, we show that FD

out(u) increases while F S
out(u)

34

decreases for all S /∈ {C ,D}.

FD
out(u)new − FD

out(u)old =
(
eDu + 1− (du + 1)(doutD + 1)

2(M + 1)

)
−
(
eDu −

dudoutD

2M

)
=

2M + dudoutD

2M
− dudoutD + doutD + du + 1

2(M + 1)

≥ 2M + dudoutD

2(M + 1)
− dudoutD + doutD + du + 1

2(M + 1)
> 0

and thus FD
out(u) is strengthened when (u, v) is introduced. Furthermore, for any

community S ∈ C and S /∈ {C ,D}, we have

F S
out(u)new − F S

out(u)old =
(
eSu −

(du + 1)doutS
2(M + 1)

)
−
(
eSu −

dudoutS

2M

)
= doutS

(du
2M
− du + 1

2(M + 1)

)
< 0

which implies F S
out(u) is weakened when (u, v) is connected. Hence, the conclusion

follows.

Theorem 2.2. Assume that a new edge (u, v) is added to the network. Let C ≡ C(u)

and D ≡ C(v). If

�qu,C ,D ≡ 4(M + 1)(euD + 1− euC) + euC(2dD − 2du − euC)− 2(du + 1)(du + 1+ dD − dC) > 0

then joining u to D will increase the overall modularity.

Proof. Node u should leave its current community C and join in D if

QD+u +QC−u > QC +QD ,

or equivalently,

mD + eD + 1

M + 1
− (dD + du + 2)2

4(M + 1)2
+
mC − eC

M + 1
− (dC − du − eC)

2

4(M + 1)2

>
mD

M + 1
− (dD + 1)2

4(M + 1)2
+

mC

M + 1
− (dC + 1)2

4(M + 1)2

35

The above equation equals to

4(M + 1)(eD + 1− eC) + eC(2dD − 2du − eC)− 2(du + 1)(du + 1 + dD − dC) > 0,

which concludes the Theorem.

Corollary 1. If the condition in Theorem 2.2 is not satisfied, then neither u nor its

neighbors should be moved to D.

Proof. The proof follows from Theorem 2.2.

2.2.3 Node removal

When an existing node u in a community C is removed, all of its adjacent edges

are disregarded as a result. This case is challenging in the sense that the resulting

community is very complicated: it can be either unchanged or broken into smaller pieces

and could probably be merged with other communities. Let’s consider two extreme

cases when a single degree node and a node with highest degree in a community

is removed. If a single degree node is removed, it leaves the resulted community

unchanged (Lemma 5). However, when a highest degree vertex is removed, the current

community might be disconnected and broken in to smaller pieces which then are

merged to other communities as depicted in Figure 2-1C. Therefore, identifying the

leftover structure of C is a crucial part once a vertex in C is removed.

To quickly and efficiently handle this task, we utilize the clique percolation method

presented in [85]. In particular, when a vertex u is removed from C , we place a

3-clique to one of its neighbors and let the clique percolate until no vertices in C are

discovered (Figure 2-1D). We then let the remaining communities of C choose their best

communities to merge in. The detailed algorithm is presented in Alg. 3.

2.2.4 Edge removal

In the last case when an edge e = (u, v) is removed, we divide further into

four subcases (1) e is a single edge connecting only u and v (2) either u or v has

36

Algorithm 3 Node Removal
Input: Node u ∈ C to be removed; Current structure Ct .
Output: An updated structure Ct+1.

1: i ← 1;
2: while N(u) ̸= ∅ do
3: Si = {Nodes found by a 3-clique percolation on v ∈ N(u)};
4: if Si == ∅ then
5: Si ← {v};
6: end if
7: N(u)← N(u)\Si ;
8: i ← i + 1;
9: end while

10: Let each singleton in N(u) consider its best communities;
11: Let each Si consider its best communities as in [6]
12: Update Ct ;

degree one (3) e is an inter-community link connecting C(u) and C(v) and (4) e is an

intra-community link. If e is an single edge, its removal will result in the same community

structure plus two singletons of u and v themselves. The same reaction applies to the

second subcase when either u or v has single degree due to Lemma 5, thus results in

the prior network structure plus u (or v). When e is an inter-community link, the removal

of e will strengthen the current network communities (Lemma 4) and hence, we just

make no change to the overall network structure.

The last but most complicated case happens when an intra-community link is

deleted. As depicted in Figure 2-1B, removing this kind of edge often leaves the

community unchanged if the community itself is densely connected; however, the

target module will be divided if it contains substructures which are less attractive or

loosely connected to each other. Therefore, the problem of identifying the structure

of the remaining modules is important. Theorem 2.3 provides us a convenient tool to

test for community bi-division when an intra-community link is removed from the host

community C . However, it requires an intensive look for all subsets of C , which may be

time consuming when C is big. Note that prior to the removal of (u, v), the community

C hosting this link should contain dense connections within itself and thus, the removal

37

of (u, v) should leave some sort of ‘quasi-clique’ structure [85] inside C . Therefore, we

find all maximal quasi-cliques within the current community and have them (as well as

leftover singletons) determine their best communities to join in. The detailed procedure

is described in Alg. 4.

Algorithm 4 Edge Removal
Input: Edge (u, v) to be removed; Current structure Ct .
Output: An updated clustering Ct+1.

1: if (u, v) is a single edge then
2: Ct+1 = (Ct\{u, v}) ∪ {u} ∪ {v};
3: else if Either u (or v) is of degree one then
4: Ct+1 = (Ct\C(u)) ∪ {u} ∪ {C(u)\u};
5: else if C(u) ̸= C(v) then
6: Ct+1 = Ct ;
7: else
8: % Now (u, v) is inside a community C %
9: L = {Maximal quasi-cliques in C};

10: Let the singletons in C\L consider their best communities;
11: end if
12: Update Ct+1;

Lemma 4. If C and D are two communities of G , then the removal of an inter-community

link connecting them will strengthen modularity contributions of both C and D.

Proof. Let Q1C (resp. Q1D) and Q2C (resp. Q2D) be the modularities of C (resp. D)

before and after the removal of that link. We show that Q2C > Q1C (and similarly,

Q2D > Q1D) and thus, C and D contribute higher modularities to the network.

Q2C −Q1C =
(m1

M − 1
− (d1 − 1)2

4(M − 1)2
)
−
(m1

M
− d2

1

4M2

)
= m1

(1

M − 1
− 1

M

)
+

1

4

(d1
M
− d1 − 1

M − 1

)(d1
M

+
d1 − 1

M − 1

)
Since all terms are all positive, Q2C −Q1C > 0. The same technique applies to show that

Q2D > Q1D .

Lemma 5. The removal of (u, v) inside a community C where only u or v is of degree

one will not separate C .

38

Proof. Assume the contradiction, i.e., after the removal of (u, v) where du = 1, C

is broken into smaller communities X1, X2,..., Xk which contribute higher modularity:

QX1
+ ... + QXk

> QC . W.L.O.G., suppose u was connected to X1 prior to its removal. It

follows that QX1+u > QX1
and thus QX1+u + ... + QXk

> QC , which raises a contradiction

since C is originally a community of C.

Lemma 6. (Separation of a community) Let C1 ⊆ C and C2 = C\C1 be two disjoint

subsets of C . (C\C) ∪ {C1,C2} is a community structure with higher modularity when an

edge crossing C1 and C2 is removed, i.e., C should be separated into C1 and C2, if and

only if e12 < d1d2−dC+1
2(M−1)

+ 1.

Proof. Let q1, q2 and qC denote the modularity contribution of C1, C2 and C after an

edge crossing (C1,C2) has been removed. Now,

e12 <
d1d2 − dC + 1

2(M − 1)
+ 1⇔ 2d1d2 − 2dC + 2

4(M − 1)2
>

e12 − 1

M − 1

⇔ (d1 + d2 − 2)2

4(M − 1)2
− (d1 − 1)2

4(M − 1)2
− (d2 − 1)2

4(M − 1)2

>
m1 +m2 + e12 − 1

M − 1
− m1 − 1

M − 1
− m2 − 1

M − 1

⇔ m1 − 1

M − 1
− (d1 − 1)2

4(M − 1)2
+
m2 − 1

M
− (d2 − 1)2

4(M − 1)2

>
m1 +m2 + e12 − 1

M − 1
− (d1 + d2 − 2)2

4(M − 1)2

⇔ q1 + q2 > qC .

Thus, the conclusion follows.

Theorem 2.3. (Community bi-division) For any community C , let α and β be the lowest

and the second highest degree of vertices in C , respectively. Assume that an edge e is

removed from C . If there do not exist subsets C1 ⊆ C and C2 ≡ C\C1 such that e is

crossing C1 and C2 and min {α(dC−α),β(dC−β)}
2M

< e12 <
(dC−2)2

8(M−1)
+ 1, then any bi-division of C

will not benefit the overall Q.

39

Proof. From Lemma 6, it follows that in order to really benefit the overall modularity we

must have
d1d2

2M
< e12 <

d1d2 + 1

2(M − 1)
+ 1.

Now we find an upper bound for the RHS inequality. Since d1 + d2 = dC , it follows that

e12 <
d1d2 − dC + 1

2(M − 1)
+ 1 ≤

(d1+d2)
2

4
− dC + 1

2(M − 1)
+ 1

≤
d2
C

4
− dC + 1

2(M − 1)
+ 1 =

(dC − 2)2

8(M − 1)
+ 1

For a lower bound of the LHS inequality, we rewrite d1d2 as d1d2 = d1(dC − d1) =

d1dC − d2
1 and find the non-zero minimum value on the range d1 ∈ [α, β]. In this interval,

d1dC − d2
1 is minimized either at d1 = α or d1 = β. Therefore,

min {α(dC − α), β(dC − β)}
2M

≤ d1d2

2M
< e12 ≤

(dC − 2)2

8(M − 1)
+ 1

Finally, our QCA method for quickly updating the network community structure is

presented in Alg. 5.

Algorithm 5 Quick Community Adaptation (QCA)
Input: G ≡ G0 = (V0,E0), E = {E1, E2, .., Es} a collection of simple events
Output: Community structure Ct of G t at time t.

1: Use [6] to find an initial community clustering C0 of G0;
2: for (t ← 1 to s) do
3: Ct ← Ct−1;
4: if Et = newNode(u) then
5: New Node(Ct , u);
6: else if Et = newEdge((u, v)) then
7: New Edge(Ct , (u, v));
8: else if Et = removeNode(u) then
9: Remove Node(Ct , u);

10: else
11: Remove Edge(Ct , (u, v));
12: end if
13: end for

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

A N = 1000,µ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

B N = 1000,µ = 0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

C N = 5000,µ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
M

I

Time points

QCA
OSLOM

FacetNet
MIEN

D N = 5000,µ = 0.3

Figure 2-2. NMI scores on synthesized networks with known communities

2.3 Experimental Results

In this section, we first validate our approaches on different synthesized networks

with known groundtruths, and then present our findings on real world traces including

the Enron email [98], arXiv eprint citation [22], and Facebook social networks [100].

To certify the performance of our algorithms, we compare QCA to other adaptive

community detection methods including (1) MIEN algorithm proposed by Thang et

al. [26], (2) FacetNet framework proposed by Lin et al. [70], and (3) OSLOM method

suggested by Lancichinetti et al. [60].

41

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

A N = 1000,µ = 0.1

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

B N = 1000,µ = 0.3

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

C N = 5000,µ = 0.1

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0 2 4 6 8 10

M
o
d
u
la

ri
ty

Time points

OSLOM
QCA

FacetNet
MIEN

D N = 5000,µ = 0.3

Figure 2-3. Modularity values on synthesized networks with known communities

2.3.1 Results on synthesized networks

Of course, the best way to evaluate our approaches is to validate them on real

networks with known community structures. Unfortunately, we often do not know that

structures beforehand, or such structures cannot be easily mined from the network

topology. Although synthesized networks might not reflect all the statistical properties of

real ones, they provide us known ground truths via planted communities, and the ability

to vary other parameters such as sizes, densities and overlapping levels, etc. Testing

community detection methods on generated data has become an usual practice that is

widely accepted in the field [58]. Hence, comparing QCA with other dynamic methods

42

on synthesized networks not only certifies its performance but also provides us the

confidence to its behaviors on real world traces.

Setup. We use the well-known LFR benchmark [58] to generate 40 networks with

10 snapshots. Parameters are: the number of nodes N = {1000, 5000}, the mixing

parameter µ = {0.1, 0.3} controlling the overall sharpness of the community structure.

In order to quantify the similarity between the identified communities and the ground

truth, we adopt a well known measure in Information Theory called Normalized Mutual

Information (NMI). NMI has been proven to be reliable and is currently used in testing

community detection algorithms [58]. Basically, NMI (U,V) equals 1 if structures U and

V are identical and equals 0 if they are totally separated, and the higher NMI the better.

Results. The NMI and Modularity values are reported in Figures 2-2 and 2-3.

As depicted in their subfigures, the NMI values and modularities indicated by our

QCA method, in general, are very high and competitive with those of OSLOM while

are much better than those produced by MIEN and FacetNet methods. On these

generated networks, we observe that MIEN and FacetNet perform well when the mixing

parameter µ is small, i.e., when the network community structures are clear, however,

their performances degrade dramatically when these structures become less clear as

µ gets larger. Particularly, MIEN’ and FacetNet’ NMI scores and modularities in all test

cases are fairly low and usually from 10% to 50% and 5% to 15% worst than those

produced by QCA. This implies the network communities revealed by these methods are

not as high similarity to the ground-truth as QCA algorithm. On the generated networks,

OSLOM algorithm performs very well as suggested through its high NMI scores and

modularity values. In particular, OSLOM tends to perform better than QCA in the first

couple of network snapshots, however, its performance is taken over by QCA when the

networks evolve over time, especially at the end of the evolution where OSLM reveals

big gaps in similarity to the planted network communities (Note that the higher NMI

score at the end of the evolution, the better the final detected community structure). This

43

concludes that the network communities discovered by QCA are of the best similarity to

ones planted in the ground-truth in comparison with other methods.

2.3.2 Results on real-world traces

We next present the results of QCA algorithms on real world dynamic social

networks including ENRON email [98], arXiv e-print citation [22], and Facebook

networks [100]. Due to the lack of appropriate communities corresponding to these

traces, we report the performance of the aforementioned algorithms in reference to the

static method proposed by Blondel et al. [6]. In particular, we will show the following

quantities (1) modularity values, (2) the quality of the identified network communities

through NMI scores, and (3) the processing time of our QCA in comparison with other

methods. The above networks possess to contain strong community structures due to

their high modularities, which was the main reason for them to be chosen.

For each network, time information is first extracted and a portion of the network

data (usually the first snapshot) is then collected to form the basic network community

structure. Our QCA method (aslo MIEN and OSLOM) take into account that basic

community structure and run on the network changes whereas the static method has

to be performed on the whole network snapshot for each time point. In this experiment,

FacetNet method does not appear to complete the tasks in a timely manner, and is thus

excluded from the plots.

ENRON email network

Data. The Enron email network contains email messages data from about 150

users, mostly senior management of Enron Inc., from January 1999 to July 2002

[98]. Each email address is represented by an unique ID in the dataset and each link

corresponds to a message between the sender and the receiver. After a data refinement

process, we choose 50% of total links to form a basic community structure of the

network with 7 major communities, and simulate the network evolution via a series of 21

growing snapshots.

44

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 5

 6

 7

 8

 9

 10

 0 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-4. Simulation results on Enron email network.

Results. We first evaluate the modularity values computed by QCA, MIEN,

OSLOM, and Blondel methods. As shown in Figure 2− 4A, our QCA algorithm archives

competitively higher modularities than the static method but a little bit less than MIEN,

and is far better than those obtained by OSLOM. Moreover, QCA also successes in

maintaining the same numbers of communities of the other two methods MIEN and

Blondel while OSLOM’s are vague (Figure 2− 4B). In particular, the modularity values

produced by QCA very well approximate those found by static method with lesser

variation. There are reasons for that. Recall that our QCA algorithm takes into account

the basic community structures detected by the static method (at the first snapshot) and

processes on network changes only. Knowing the basic network community structure

45

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-5. Simulation results on arXiv e-print citation network.

is a great advantage of our QCA algorithm: it can avoid the hassle of searching and

computing from scratch to update the network with changes. In fact, QCA uses the basic

structure for finding and quickly updating the local optimal communities to adapt with

changes introduced during the network evolution.

The running time of QCA and the static method in this small network are relatively

close: the static method requires one second to complete each of its tasks while our

QCA does not even ask for one (Figure 2− 4C). In this dataset, MIEN and OSLOM

requires a little more time (1.5 and 2.4 seconds in average for MIEN and OSLOM) to

complete their tasks. Time and computational cost are significantly reduced in QCA

46

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

A Modularity

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

B Number of Communities

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

Time point

Blondel
QCA

MIEN
OSLOM

C Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Time point

QCA
MIEN

OSLOM

D NMI

Figure 2-6. Simulation results on Facebook social network.

since our algorithms only take into account the network changes while the static method

has to work on the whole network every time.

As reported in Figure 2− 4D, both the NMI scores of ours and MIEN method

are very high and relatively close to 1 while those obtained by OSLOM fall short and

are far from stable. These results indicate that in this Enron email network, both QCA

and MIEN algorithms are able to identify high quality community structure with high

modularity and similarity; however, only our method significantly reduces the processing

time and computational requirement.

47

arXiv e-print citation network

Data. The arXiv e-print citation network [22] has become an essential mean of

assessing research results in various areas including physics and computer sciences.

This network contained more than 225K articles from January 1996 to May 2003. In

our experiments, citation links of the first two years 1996 and 1997 were used to form

the basic community structure of our QCA method. In order to simulate the network

evolution, a total of 30 time dependent snapshots are created on a two-month regular

basis from January 1998 to January 2003.

Results. We compare modularity results obtained by QCA algorithm at each

network snapshot to Blondel as well as to MIEN and OSLOM methods. It reveals from

Figure 2-5A that the modularities returned by QCA are very close to those obtained

by the static method with much more stabler and are far higher than those obtained

by OSLOM and MIEN. In particular, the modularity values produced by QCA algorithm

cover from 94% up to 100% that of Blondel method and from 6% to 10% higher than

MIEN and at least 1.5x better than OSLOM. In this citation networks, the numbers of

communities detected by OSLOM take off with more than 1200 whereas those found by

QCA, MIEN and Blondel methods are relatively small (Figure 2-5B). Our QCA method

discovers more communities than both Blondel and MIEN as the network evolves

and this can be explained based on the resolution limit of modularity [35]: the static

method might disregard some small communities and tend to combine them in order to

maximize the overall network modularity.

A second observation on the running time shows that QCA outperforms the static

method as well as its competitor MIEN: QCA takes at most 2 seconds to complete

updating the network structure while Blondel method requires more than triple that

amount of time, MIEN and OSLOM asks for more than 5 times (Figure 2− 5C). In

addition, higher NMI scores of QCA than MIEN’s and especially OSLOM’s scores

(Figure 2− 5D) implies network communities identified by our approach are not only

48

of high similarity to the ground truth but also more precise than that detected by MIEN,

while the computational cost and the running time are significantly reduced.

Facebook social network

Data. This dataset contains friendship information among New Orleans regional

network on Facebook [100], spanning from September 2006 to January 2009 with

more than 60K nodes (users) connected by more than 1.5 million friendship links. In

our experiments, nodes and links from September 2006 to December 2006 are used

to form the basic community structure of the network, and each network snapshot is

recored after every month during January 2007 to January 2009 for a total of 25 network

snapshots.

Results. The evaluation depicted in Figure 2− 6A reveals that QCA algorithm

achieves competitive modularities in comparison with the static method, and again far

better than those obtained by MIEN and OSLOM method, especially in comparison with

OSLOM whose perform was nice on synthesized networks. In the general trend, the

line representing QCA results closely approximates that of the static method with much

more stability. Moreover, the two final modularity values at the end of the experiment are

relatively the same, which means that our adaptive method performs competitively with

the static method running on the whole network.

Figure 2− 6C describes the running time of the three methods on the Facebook

data set. As one can see from this figure, QCA takes at least 3 seconds and at most

4.5 seconds to successfully compute and update every network snapshot whereas the

static method, again, requires more than triple processing time. MIEN and OSLOM

methods really suffer on this large scale network when requiring more than 10x and

11x that amounts of QCA running times. In conclusion, high NMI and modularity scores

together with decent executing times on all test cases confirm the effectiveness of

our adaptive method, especially when applied to real world social networks where a

49

centralized algorithm, or other dynamic algorithms, may not be able to detect a good

network community structure in a timely manner.

However, there is a limitation of QCA algorithm we observe on this large network

and want to point out here: As the the duration of network evolution lasts longer over

time (i.e., the number of network snapshots increases), our method tends to divide the

network into smaller communities to maximize the local modularity, thus results in an

increasing number of communities and a decreasing of NMI scores. Figure 2− 6B and

2− 6D describes this observation. For instance, at snapshot 12 (a year after December

2006), the NMI score is approximately 1/2 and continues decaying after this time point.

It implies a refreshment of network community structure is required at this time, after a

long enough duration. This is reasonable since activities on an online social network,

especially on Facebook social network, tend to come and go rapidly and local adaptive

procedures are not enough to reflect the whole network topology over a long period of

time.

50

CHAPTER 3
OVERLAPPING COMMUNITY STRUCTURE DETECTION

In this chapter, we present AFOCS, an adaptive framework to discover and trace the

evolution of network communities in dynamic complex systems. In section 3.1, we first

state the problem definition including basic notations and the dynamic network model.

Next, we present the procedure to detect the basic community structure in section 3.2,

and then our AFOCS framework to update and trace the community structure evolution

over time in section 3.3. Finally, we demonstrate the empirical results in section 3.4.

3.1 Problem Formulation

3.1.1 Basic notations

Let G = (V ,E) be an undirected unweighted graph representing the network

where V is the set of N nodes and E is the set of M connections. Denote by C =

{C1,C2, ...,Ck} the network community structure, i.e., a collection of subsets of V

where each Ci ∈ C and its induced subgraph form a community of G . In contrast with

the disjoint community structure, we allow Ci ∩ Cj ̸= ∅ so that network communities

can overlap with each other. For a node u ∈ V , let du, N(u) and Com(u) denote its

degree, its neighbors and its set of community labels, respectively. For any C ⊆ V ,

let C in and C out denote the set of links having both endpoints in C and the set of links

having exactly one endpoint in C , respectively. Finally, the terms node-vertex as well as

edge-link-connection are used interchangeably.

3.1.2 Dynamic network model

Let G0 = (V0,E0) be the original input network and Gt = (Vt ,Et) be a time

dependent network snapshot recorded at time t. Denote by �Vt and �Et the sets of

nodes and edges to be added to or removed from the network at time t. Furthermore,

let �Gt = (�Vt , �Et) describe this change in terms of the whole network. The network

snapshot at next time step t + 1 is expressed as a combination of the previous one

51

Figure 3-1. Overlapped v.s. non-overlapped community structures.

together with the change, i.e., Gt+1 = Gt ∪ �Gt . Finally, a dynamic network G is defined

as a sequence of network snapshots changing over time: G = (G0,G1,G2, ...).

3.1.3 Density function

In order to quantify the goodness of an identified community, we use the popular

density function 	 [33] defined as: 	(C) = 2|C in|
|C |(|C |−1)

where C ⊆ V . Unlike the case of

disjoint community structure, in which the number of connections crossing communities

should be less than those inside them, our objective does not take into account the

number of out-going links from each community. To understand the reason, let us

consider a simple example pictured in Figure 3− 1. In the overlapping community

structure point of view, it is clear that every clique should form a community on its own,

and each community shares with the central clique exactly one node. However, in the

disjoint community structure point of view, any vertex at the central clique has n internal

and 2n external connections, which violates the concept of a community in the strong

sense. Furthermore, the internal connectivity of the central clique is also dominated by

its external density, which implies the concept of a community in weak sense is also

violated. (A community C is in a weak sense if |C in| > |C out |, and in a strong sense if

any node in C has more links inward than outward C [91]).

52

In order to set up a threshold on the internal density that suffices for a set of nodes

C to be a local community, we propose a function τ(C) defined as follows:

τ(C) =
σ(C)(|C |

2

) where σ(C) =

(
|C |
2

)1− 1

(|C |
2)

Here σ(C) is the threshold on the number of inner connections that suffices for C to be

a local community. Particularly, a subgraph induced by C is a local community iff 	(C)

≥ τ(C) or equivalently |C in| ≥ σ(C). Several functions with the same purpose have been

introduced in the literature, for instance, in the work of [56][62], and it is worth noting

down the main differences between them and ours. First and foremost, our functions

τ(C) and σ(C) locally process on the candidate community C only and neither require

any predefined thresholds or user-input parameters. Secondly, by Proposition 3.1, σ(C)

and τ(C) are increasing functions and closely approach C ’s full connectivity as well as

its maximal density. That makes σ(C) and τ(C) relaxation versions of the traditional

density function, yet useful ones as we shall see in the experiments.

Proposition 3.1. The function f (n) = n1−
1
n is strictly increasing for n ≥ 4 and

limn→∞ f (n) = n.

3.1.4 Objective function

Our objective is to find a community assignment for the set of nodes V which

maximizes the overall internal density function 	(C) =
∑

C∈C 	(C) since the higher

the internal density of a community is, the clearer its structure would be. Although our

objective puts more focus on the internal edges and less focus on the external edges,

these external edges are not completely ignored but are considered in the following

senses: they will be tested later for the formation of another community if the number

of edges suffices. Only when these external edges are really sparse, they will not be

considered.

53

3.1.5 Problem definition

Given a dynamic network G = (G0,G1,G2, ...) where G0 is the input network and

G1,G2, ... are network snapshots obtained through a collection of network topology

changes �G1, �G2, ... over time. The problem asks for an adaptive framework to

efficiently detect and update the network overlapping community structure Ct at any

time point t by only utilizing the information from the previous snapshot Ct−1, as well as

tracing the evolution of the network communities.

In the next section, we present our main contribution: an adaptive framework for

(1) identifying basic overlapped community structure in a network snapshot and (2)

updating as well as tracing the evolution of the network communities in a dynamic

network model. First, we describe FOCS, a procedure to identify the basic communities

in a static network, and then discuss in great detail how AFOCS adaptively updates

these basic communities to cater with the evolution of the dynamic network.

3.2 Basic Community Structure Detection

We describe FOCS, the first phase of our framework that quickly discovers the

basic overlapping network community structure. In general, FOCS works toward the

classification of network nodes into different groups by first locating all possible densely

connected parts of the network (3.2.1), and then combining those who highly overlap

with each other, i.e., those share a significant substructure (3.2.2). Finally, a final

refinement to group unassigned nodes into different communities is conducted in (3.2.3).

In FOCS, β (the input overlapping threshold) defines how much substructure two

communities can share. Note that FOCS fundamentally differs from [1] in the way it

allows |Ci ∩ Cj | ≥ 2 for any subsets Ci ,Cj of V , and consequently allows network

communities to overlap not only at a single vertex but also at a part of the whole

community.

54

u v

(a) A (b) B

Figure 3-2. Locating and merging local communities.

3.2.1 Locating local communities

Local communities are connected parts of the network whose internal densities are

greater than a certain level. In FOCS, this level is automatically determined based on

the function τ() and the size of each corresponding part. Particularly, a local community

is defined based on a connection (u, v) when the number of internal connections in the

subgraph induced by C ≡ {u, v} ∪ (N(u) ∩ N(v)) exceeds σ(C), or in other words, when

	(C) ≥ τ(C) as illustrated in Figure 3-2A. Here, (a) A local community C defined by a

link (u, v). Here 	(C) = 0.9 > τ(C) = 0.794 (b) Merging two local communities sharing

a significant substructure (OS score = 1.027 > β = 0.8).

However, there is a problem that might eventually arise: the containment of sub

communities in an actual bigger one. Intuitively, one would like to detect a bigger

community unified by smaller ones if the bigger community is itself densely connected.

In order to filter this undesired case, we impose 	
(∪s

i=1 Ci

)
< τ

(∪s

i=1 Ci

)
∀s = 1...|C|

(note that some of these unifications do not contain all the nodes). In addition, we allow

this locating procedure to skip over tiny communities of size less than 4. This condition

is carried out from Proposition 3.1. This makes sense in terms of mobile or social

networks where a group of mobile devices or a social community usually has size larger

than 3, and intuitively agrees with the finding of [34][66]. Thus, the condition |C | ≥ 4 is

55

imposed for any community C we discuss hereafter. The tiny communities will then be

identified later. Alg. 6 describes this procedure.

Algorithm 6 Locating local communities
Input: G = (V ,E)
Output: A collection of raw communities Cr .

1: Cr ← ∅;
2: for ((u, v) ∈ E) do
3: if (Com(u) ∩ Com(v) = ∅) then
4: C ← {u, v} ∪ N(u) ∩ N(v);
5: if (|C in| ≥ σ(C) and |C | ≥ 4) then
6: Check C ’s connectivity if |C | = 5;
7: Define C a local community;
8: /*Include C into the raw community structure*/
9: Cr ← Cr ∪ {C};

10: end if
11: end if
12: end for

Lemma 7. All local communities C ’s detected by Alg. 6 satisfy 	(C) ≥ τ(4) ≈ 0.74.

Furthermore, other communities satisfying these conditions will also be detected by Alg.

6.

Proof. Alg. 6 will examine every edge (u, v) ∈ E (except those whose endpoints are

already in the same community), and by this greedy nature, any local community it

detects has |C | > 4 and 	(C) ≥ τ(C) ≥ τ(4) ≈ 0.74.

We now show that any community C statisfying |C | ≥ 4 and 	(C) ≥ τ(C) ≥ τ(4)

will also be detected by Alg. 6. Suppose otherwise, that is there exists a community C

satisfying these two conditions and is not detected by Alg. 6. To prove that this is not the

case, we do the following: (1) Construct a community D which is not detected by Alg. 6

with |D| = n ≡ |C | and 	(D) is maximized, and (2) show that 	(D) < τ(D).

Because |D| = |C |, it implies τ(D) = τ(C). However, since 	(D) is maximized,

	(D) ≥ 	(C) which in turn implies 	(C) ≤ 	(D) < τ(D) = τ(C). This raises a

contradiction to our original assumption, and thus concludes the proof.

56

To construct D, we do as follow (i) make D a clique of size n, and (ii) remove edges

from D one by one until D cannot be detected by Alg. 6. By doing in this way, 	(D) is

maximized iff the number of removed edges is minimized.

It is easy to find the least number of edges we have to remove from D is n/2 if n

is even and n/2 − 1 if n is odd. Therefore, mD = n(n − 1)/2 − n/2 if n is even, and

mD = n(n − 1)/2− (n − 1)/2 if n is odd. Now, 	(D) < τ(D) iff mD <
(
n(n−1)

2

)1− 2
n(n−1) . Let

f (n) be the difference between the left and the right hand sides, we show that f (n) < 0

as n increases. Taking the derivative of f (n) gives δf (4) < 0 and f (n) < f (4) < 0 for

all even n > 4, and δf (7) < 0 and f (n) < f (7) < 0 for all odd n > 7. When n = 5,

f (5) > 0 but this is the only exception and thus, can be handled easily in line 6 of Alg. 6.

Therefore, we have 	(D) < τ(D), and hence, the conclusion follows.

Theorem 3.1. The local community structure Cr detected by Alg. 6 satisfies 	(Cr) ≥

τ(4) × 	(OPT) where OPT is the optimal dense community assignment satisfying

	(S) ≥ τ(4) for any S ∈ OPT .

Proof. Let Cr be the local community structure returned by Alg. 6, and OPT be the

optimal solution of the dense community assignment satisfying 	(S) ≥ τ(4) for any

S ∈ OPT . Let k = |OPT |. Clearly 	(OPT) ≤ k . By Lemma 7, we know that Alg. 6 can

detect as many communities as OPT but probably with less internal density. Moreover,

since Alg. 6 only skips over edges in a community, it ensures that no real community is

a substructure of a bigger one. Hence, we have 	(Cr) ≥ τ(4) × k ≈ 0.74 × 	(OPT).

This also implies that Alg. 6 is an 0.74-approximation algorithm for finding local densely

connected communities.

Lemma 8. The time complexity of Alg. 6 is O(dM) where d = maxv∈V dv .

Proof. Time to examine an edge (u, v) is |N(u)|+|N(v)| = du+dv . However, when u and

v are in the same community, (u, v) will be skipped. Therefore, the total time complexity

is upper bounded by d
∑

u∈V du = O(dM).

57

3.2.2 Combining overlapping communities

After Alg. 6 finishes, the raw network community structure is pictured as a collection

of (possibly overlapped) dense parts of the network together with outliers. As some of

those dense parts can possibly share significant substructures, we need to merge them

if they are highly overlapped. To this end, we introduce the overlapping score of two

communities defined as follow

OS(Ci ,Cj) =
|Iij |

min{|Ci |, |Cj |}
+

|I inij |
min{|C in

i |, |C in
j |}

where Iij = Ci ∩ Cj . Basically, OS(Ci ,Cj) values how important the common nodes and

links shared between Ci and Cj mean to the smaller community. In comparison with the

distance metric suggested in [63], our overlapping score not only takes into account the

fraction of common nodes but also values the fraction of common connections, which

is crucial in order to combine network communities. Furthermore, OS(·, ·) is symmetric

and scales well with the size of any community, and the higher the overlapping score,

the more those communities in consideration should be merged. In this merging

process, we combine communities Ci and Cj if OS(Ci ,Cj) ≥ β (Figure 3-2B).

Algorithm 7 Combining local communities
Input: Raw community structure Cr
Output: A refined community structure D.

1: D ← Cr ;
2: Done ← false;
3: while (!Done) do
4: Done ← true;
5: Order (Ci ,Cj)’s by their OS(Ci ,Cj) scores;
6: for (Ci ,Cj ∈ Cr) do
7: if (OS(Ci ,Cj) > β and) then
8: C ← Combine Ci and Cj ;
9: /*Update the current structure*/

10: D ← (Cf \{Ci ∪ Cj}) ∪ C ;
11: Done ← False;
12: end if
13: end for
14: end while

58

The time complexity of Alg. 7 is O(N2
0) where N0 is the number of local communities.

Clearly, N0 ≤ M and thus, it can be O(M2). However, when the intersection of

two communities is upper bounded, by Lemma 9 we know that the number of local

communities is also upper bounded by O(N), and thus, the time complexity of Alg. 7

is O(N2). In our experiments, we observe that the running time of this procedure is,

indeed, much less than O(N2).

Lemma 9. The number of raw communities detected in Alg. 6 is O(N) when the number

of nodes in the intersection of any two communities is upper bounded by a constant α.

Proof. For each Ci ∈ C, decompose it into overlapped and non-overlapped parts,

denoted by C ov
i and C nov

i . We have Ci = C ov
i ∪ C nov

i and C ov
i ∩ C nov

i = ∅. Therefore,

|Ci | = |C ov
i |+ |C nov

i |.

Now, ∑
Ci∈C

|Ci | =
∑
Ci∈C

(|C ov
i |+ |C nov

i |) ≤ N +
∑
i<j

|C ov
i ∩ C nov

j |,

where N =
∑

Ci∈C |C
nov
i |+

∣∣∪
Ci∈C |C

ov
i |
∣∣. For an upper bound of the second term, rewrite

∑
i<j

|C ov
i ∩ C nov

j | ≤ N +
∑

|Ci∩Cj |≥2

|Ci ∩ Cj | ≤ N(1 + α),

where α = max{|Ci ∩ Cj | : |Ci ∩ Cj | ≥ 2}

Hence,
∑

Ci∈C |Ci | ≤ N(2 + α). Let N0 be the number of raw communities, it

follows that N0min{|Ci |} ≤
∑

Ci∈C |Ci | ≤ (2 + α)N. Since min{|Ci |} ≥ 4, we have

N0 ≤ (2+α)
4

N = O(N).

Remark

After the above community merging process, detected communities can possibly be

of very large sizes. The explanation is as follow: small quasi-cliques are discovered in

the first phase (Alg. 6) as densely connected parts of the network, and are regarded as

candidate elements for bigger communities in the merging process. If these small

cliques are loosely connected to the rest of the network, they will retain as local

59

communities afterwards. Otherwise, they can be merged to other dense parts to

become new bigger communities. As a result, if the communities are highly overlapped,

some of them can potentially grow to very large sizes at the end of the merging process,

beside the small cliques detected at the first place. Larger dense quasi-cliques, though

rare in many networks, will surely be detected by FOCS as we observed in Theorem 3.1.

3.2.3 Revisiting unassigned nodes

Even when the above two procedures are executed, there would still exist leftover

nodes or edges due to their less attraction to the rest of the network. Because of its

size constraint, the first procedure skips over tiny communities of sizes less than four

and thus, may leave out some nodes unlabeled. These nodes will not be touched in the

second phase since they do not belong to any local communities, and consequently, will

remain unassigned afterwards. Moreover, they are mostly nodes with less connection

to the rest of the network, and thus, are very likely supplement nodes possibly to their

adjacent communities. Therefore, we need to revisit those nodes to either group them

into appropriate communities or classify them as outliers based on their connectivity

structures.

Algorithm 8 Revisit Unassigned Nodes
Input: The refined community structure D = {D1,D2, ...,Dt}
Output: The basic community structure C = {C1,C2, ...,Ck}

1: C ← D;
2: for (u ∈ V and Com(u) == ∅) do
3: NC(u)← {Cj ∈ C|u is adjacent to Cj};
4: for (Cj ∈ NC(u)) do
5: if (FCj∪{u} ≥ FCj

) then
6: Cj ← Cj ∪ {u};
7: Com(u)← Com(u) ∪ {j};
8: end if
9: end for

10: if (Com(u) == ∅) then
11: Classify u as an outlier;
12: end if
13: end for

60

Alternatively, this process can be thought of as a community trying to hire adjacent

unassigned nodes which are similar to the host community. However, the internal

density function might be too strict for them to be included in any community (which

was also the reason why they are left unassigned). To this end, we need a community

fitness function in order to quantify the similarity between a node u and a neighbor

community C . We find the fitness function FS = |S in|
2|S in|+|Sout | (where S ⊆ V) commonly

used in [56][39][63] performs competitively in both synthesized and real-world datasets.

Taking into account this fitness function, a community C will keep hiring any unassigned

adjacent vertex of maximum similarity in a greedy manner, provided the newly joined

vertex does not shrink down the community’s current fitness value. If there is no such

node, C is defined as a final network community. Nodes remained unlabeled through

this last procedure are identified as outliers. This algorithm is presented in Alg. 8.

3.3 Detecting Evolving Network Communities

We describe AFOCS, the second phase and also the main focus of our detection

framework. In particular, we use AFOCS to adaptively update and trace the network

communities, which were previously initialized by FOCS, as the dynamic network

evolves over time. Note that FOCS is executed only once on G0, after that AFOCS will

take over and handle all changes introduced to the network.

Let us first discuss the various behaviors of the community structure when the

network topology evolves over time. Suppose G = (V ,E) and C = {C1,C2, ..,Cn} is the

current network and its corresponding overlapping community structure, respectively.

We use the term intra links to denote edges whose two endpoints belong to the same

community, inter links to denote those with endpoints connecting different disjoint

communities and the term hybrid links to stand for the others. For each community C of

G , the number of connections joining C with the others are lesser than the number of

connections within C itself by definition

61

Intuitively, the addition of intra links or removal of inter links between communities

of G will strengthen them and consequently, will make the structure of G more clear.

Similarly, removing intra links from or introducing inter links to a community of G will

decrease its internal density and as a result, loosen its internal structure. However,

when two communities have less distraction to each other, adding or removing links

makes them more attractive to each other and therefore, leaves a possibility that they

can overlap with each other or can be combined to form a new community. The updating

process, as a result, is very complicated and challenging since any insignificant change

in the network topology could possibly lead to an unpredictable transformation of the

network community structure.

In order to reflect these changes to a complex network, its underlying graph model

is frequently updated by either inserting or removing a node or a set of nodes, or an

edge or a set of edges. A scrutiny look into these events reveals that the introduction or

removal of a set of nodes (or edges) can furthermore be decomposed as a collection

of node (or edge) insertions (or removals), in which only a node (or only an edge) is

inserted (or removed) at a time. Therefore, changes to the network at each time step

can be viewed as a collection of simpler events whose details are as follow:

• newNode (V + u): A new node u and its adjacent edge(s) are introduced

• removeNode (V − u): A node u and its adjacent edge(s) are removed from the
network.

• newEdge (E + e): A new edge e connecting two existing nodes is introduced.

• removeEdge (E − e): An edge e in the network is removed.

As we mentioned earlier, our adaptive framework initially requires a basic

community structure C0. To obtain this basic structure, we apply FOCS algorithm at

the first network snapshot, i.e., we execute FOCS on the network G0 and then let

AFOCS adaptively handle this structure as the network evolves.

62

u

Figure 3-3. A possible scenario when a new node is introduced.

3.3.1 Handling a new node

Let us discuss the first case when a new node u and its associated links are

introduced to the network. Possibilities are (1) u may come with no adjacent edge or (2)

with many of them connecting one or more possibly overlapped communities. If u has no

adjacent edge, we simply join u in the set of outliers and preserve the current community

structure.

The interesting case happens, and it usually does, when u comes with multiple links

connecting one ore more existing communities. Since network communities can overlap

each other, we need to determine which ones u should join in in order to maximize the

gained internal density. But how can we quickly and effectively do so? By Lemma 10,

we give a necessary condition for a new node in order to join in an existing community,

i.e., our algorithm will join node u in C if the number of connections u has to C suffices:

dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci | + 1) − |C in

i |}. However, failing to satisfy this condition does not

necessarily imply that u should not belong to C , since it can potentially gather some

substructure of C to form a new community (Figure 3-3). Thus, we also need to handle

this possibility. Alg. 9 presents the algorithm.

Lemma 10. Suppose u is a newly introduced node with dui connections to each

adjacent community Ci . u will join in Ci if dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}.

63

Algorithm 9 Handling a new node u

Input: The current community structure Ct−1

Output: An updated structure Ct .
1: C1,C2, ...,Ck ← Adjacent communities of u;
2: for i = 1 do to k

3: if (dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}) then
4: Ci ← Ci ∪ {u};
5: else
6: C ← N(u) ∩ Ci ;
7: if ((C) ≥ τ(C) and |C | ≥ 4) then
8: Ci ← Ci ∪ {u};
9: end if

10: end if
11: end for
12: /*Checking new communities formed from outliers*/
13: for (v ∈ N(u) and Com(v) ∩ Com(u) = ∅) do
14: C ≡ N(u) ∩ N(v);
15: if ((C) ≥ τ(C) and |C | ≥ 4) then
16: Define C a new community;
17: end if
18: end for
19: Merging overlapping communities on C1,C2, ...,Ck ;
20: Update Ct ;

Proof. Prior to u joining to Ci , the internal density is 	(Ci) =
2|C in

i
|

|Ci |(|Ci |−1)
. Similarly, after

u joining in Ci , the density function is 	(Ci ∪ {u}) =
2|C in

i
|+2du i

|Ci |(|Ci |+1)
. Taking the difference

between these two quantities gives 	(Ci ∪ {u}) > 	(Ci) ⇐⇒ dui >
2|C in

i
|

|Ci |−1
. Moreover, u

should also satisfy 	(Ci∪{u}) ≥ τ(Ci∪{u}), which in turn implies du,i ≥ f (|Ci |+1)−|C in
i |.

Therefore, dui > max{ 2|C in
i
|

|Ci |−1
, f (|Ci |+ 1)− |C in

i |}.

The analysis of Alg. 9 is shown by Lemma 11. In particular, we show that this

procedure achieves at least 74% the internal density of the optimal assignment for u,

given the prior community structure.

Lemma 11. Alg. 9 produces a community assignment that, prior to the community

combination process, achieves 	(Ct) ≥ τ(4) × 	(OPT (u)t) where OPT (u)t is the

optimal community assignment for u at time t, given the prior community structure Ct−1.

64

(a) (b)

Figure 3-4. Possible scenarios when a new edge is introduced.

Proof. Let C1,C2, ...,Ck be the communities (including the newly formed ones) in Ct that

Alg. 9 assigns the new node u to. Note that in the optimal solution OPT (u)t , the number

of communities u belongs to should not exceed k since each Ci is also a candidate for

OPT (u)t (of course, OPT (u)t could possibly rearrange nodes differently). Therefore,

the optimal internal density gained is upper bounded by k . On the other hand, Alg. 9

makes sure that each community Ci that u joins in should have 	(Ci) ≥ τ(Ci) ≥ τ(4)

since |Ci | ≥ 4. Thus, Alg. 9 will achieve at least τ(4)× k ≈ 0.74×	(OPT (u)t).

3.3.2 Handling a new edge

In case where a new edge e = (u, v) connecting two existing vertices u and v

is introduced, we divide it further into two four smaller cases: (1) e is solely inside a

single community C (2) e is within the intersection of two (or more) communities (3) e is

joining two separated communities and (4) e is crossing overlapped communities. If e

is totally inside a community C , its presence will strengthen C ’s internal density and by

Lemma 12, we know that adding e should not split the current community C into smaller

substructures.

In the second subcase, the introduction of the new edge might increase the density

of some part of C and it is reasonable to think of that part (say D) as a new separated

community. However, since D originally shared a significant substructure with C , the

65

merging process will then combine C and D (if they were separated) to be a bigger

community, thus raising the same community as if C was kept intact. Therefore, the

same reaction applies in the second subcase when e is within the intersection of two

communities since their inner densities are both increased. Thus, in these first two

cases, we leave the current network structure intact.

Algorithm 10 Handling a new edge (u, v)

Input: The current community structure Ct−1.
Output: An updated community structure Ct .

1: if ((u, v) ∈ a single community OR (u, v) ∈ Cu ∩ Cv) then
2: Ct ← Ct−1;
3: else if (Com(u) ∩ Com(v) == ∅) then
4: C ← N(u) ∩ N(v);
5: if ((C) ≥ τ(C)) then
6: Define C a new community;
7: Check for combining on Com(u), Com(v) and C ;
8: else
9: for (D ∈ Com(u) (or D∗ ∈ Com(v))) do

10: if ((D ∪ {v}) ≥ τ(D ∪ {v})) (or 	(D ∗ ∪{u}) ≥ τ(D ∗ ∪{v})) then
11: D ← D ∪ {v} (or D∗ ← D ∗ ∪{u})
12: end if
13: end for
14: Merging overlapping communities for D ’s (or D∗);
15: end if
16: Update Ct ;
17: end if

Handling the last two subcases is complicated since any of them can either have no

effect on the current network structure or unpredictably form a new network community,

and furthermore can overlap or merge with the others (Figure 3-4). However, there is

still a possibility that the introduction of this new link, together with some substructure

of Cu or Cv , suffices to form a new community that can overlap with not only Cu and Cv

but also with some of the others. The other subcases can be handled similarly. Alg. 10

describe this procedure.

Lemma 12. If an new edge (u, v) is introduced solely inside a community C , it should

not split C into smaller substructures.

66

(a) (b)

Figure 3-5. Possible scenarios when an existing node is removed.

Proof. Suppose otherwise, that is C is divided into smaller parts C1 and C2. Prior to the

introduction of (u, v), we have 	(C) = 	(C1 ∪ C2) ≥ τ(C) = τ(C1 ∪ C2). Now, when C1

and C2 are formed, they imply that 	(C1 ∪ C2 + (u, v)) < τ(C1 ∪ C2 + (u, v)). Putting all

together, we have τ(C1 ∪ C2 + (u, v)) = τ(C1 ∪ C2) > 	(C1 ∪ C2 + (u, v)) > 	(C) >

τ(C1 ∪ C2), which raises a contradiction. Thus, the conclusion follows.

3.3.3 Removing an existing node

When an existing node u is about to be removed from the network, all of its adjacent

edges will also be removed as a consequence. If u is an outlier, we can simply exclude

u and its corresponding links from the current structure and safely keep the network

communities unchanged.

In unfortunate situations where u is not an outlier, the problem becomes very

challenging in the sense that the resulting community is complicated: it can either be

unchanged, or broken into smaller communities, or could probably be further merged

with the other communities. To give a sense of this effect, let’s consider two examples

illustrated in Figure 3-5. In the first example, when C is almost a full clique, the removal

of any node will not break it apart. However, if we a remove node that tends to connect

the others within a community, the leftover module is broken into a smaller one together

with a node that will later be merged to one of its nearby communities. Therefore,

identifying the leftover structure of C is a crucial task once a vertex u in C is removed.

67

To quickly handle this task, we first examine the internal density of C excluding the

removed node u. If the number of internal connections still suffices, e.g., 	(C\{u}) ≥

τ(C\{u}), we can safely keep the current network community structure intact because C

is still tightly connected itself with a sufficient internal density. Otherwise, this community

is of a weak strength and shall be broken into smaller ones. These substructures

might further be merged with other communities if C origianlly overlaps with them. To

efficiently detect these new substructures, we apply Alg. 6 on the subgraph induced by

C\{u} to quickly identify the leftover modules in C , and then let these modules hire a set

of unassigned nodes 	(C) that help them increasing their inner densities. Finally, we

locally check for community combination, if any, by using an algorithm similar to Alg. 7.

Alg. 11 presents the procedure.

Algorithm 11 Removing a node u

Input: The current community structure Ct−1.
Output: An updated structure Ct .

1: for (C ∈ Com(u) and 	(C\{u}) < τ(C\{u})) do
2: LC ← Local communities by Alg 6 on C\{u};
3: for (Ci ∈ LC and |Ci | ≥ 4) do
4: Si ← Nodes such that 	(Ci ∪ Si) ≥ τ(Ci ∪ Si);
5: Ci ← Ci ∪ Si ;
6: end for
7: Merging overlapping communities on LC ;
8: end for
9: Update Ct ;

3.3.4 Removing an edge

In the last situation when an edge e = (u, v) is about to be removed, we divide it

further into four subcases similar to those of a new edge (1) e is between two disjoint

communities (2) e is inside a sole community (3) e is within the intersection of two (or

more) communities and finally (4) e is crossing overlapping communities.

In the first subcase, when e is crossing two disjoint communities, its removal will

make the network structure more clear (since we now have less connections between

groups), and thus, the current communities should be keep unchanged. When e is

68

(a) (b)

Figure 3-6. Possible scenarios when an existing edge is removed.

totally within a sole community C , handling its removal is complicated since this can lead

to an unpredictable transformation of the host module: C could either be unchanged or

broken into smaller modules if it contains substructures which are less attractive to each

other, as depicted in Figure 3-6. Therefore, the problem of identify the structure of the

remaining module becomes the central part for not only this case but also for the others.

Algorithm 12 Removing an edge (u, v)

Input: The current structure Ct−1.
Output: An updated community structure Ct .

1: if ((u, v) is an isolated edge) then
2: Ct = (Ct−1\{u, v}) ∪ {u} ∪ {v};
3: else if (du = 1 (or dv = 1)) then
4: Ct = (Ct−1\C(u)) ∪ {u} ∪ C(v);
5: else if (C ≡ C(u) ∩ C(v) = ∅) then
6: Ct = Ct−1;
7: else if ((C\(u, v)) < τ(C\(u, v))) then /*Here C ̸= ∅*/
8: LC ← Local communities by Alg 6 on C\(u, v);
9: Define each L ∈ LC a local community of Ct−1;

10: Merging overlapping community on L’s;
11: end if
12: Update Ct ;

To quickly handle these tasks, we first verify the inner density of the remaining

module and, again utilize the local community location method (Alg. 6) to locally

identify the leftover substructures. Next, we check for community combination since

69

these structures can possibly overlap with existing network communities. The detailed

procedure is described in Alg. 12.

3.3.5 Remarks

Note that the ultimate goal of our framework is to adaptively detect and update the

community structure as the network evolves, i.e., to mainly deal with the dynamics of a

mobile network. As a result, we mainly put our focus on AFOCS. Although FOCS, the

first detection phase, appears to be a centralized algorithm, it is executed only once

at the very first network snapshot whereas AFOCS stays up and locally handles all

changes as the network evolves over time. That said, we do not execute FOCS again.

Furthermore, AFOCS can be run independently with FOCS, i.e., one can use any

localized detection algorithm to identify a basic community structure at the first phase.

Thus, AFOCS can be easily apply to solve mobile network problems.

3.3.6 Complexity

Our main algorithm consists of two parts: (1) finding the basic community structure

and (2) updating the network community structure through changes introduced at every

time step. The complexity of quickly unfolding the basic network community structures

has been claimed to be linear in terms of number of nodes and links O(M + N) [58]. To

handle the case of a new node of degree p coming in, our algorithm computes p forces

this new node applies to its neighbors, which results in linear time complexity O(p).

When a new edge connecting nodes u and v is introduced to the network, our algorithm

just simply computes the forces applied to communities adjacency nodes, which takes

O(|C(u)| + |C(v)|) in the best case and O(k × max{|C(u)|, |C(v)|}) in the worst case

when some nodes in a module are pulled out to form new communities (where k is the

number of communities in G). The time taken to handle the last two cases is essentially

the time complexity of the clique percolation, which is roughly O(|C(u)|3) in the worst

case. Although the time complexity is in the third order of number of nodes, the total

nodes inside a single community is relatively small in comparison with the total number

70

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 M

u
lt
u
a
l
In

fo
rm

a
ti
o
n

Overlapping Fraction

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

Figure 3-7. NMI scores for different values of β. N = 5000 (top), N = 1000 (bottom),
µ = 0.1 (left), µ = 0.3 (right).

of vertices N, and thus, does not affect the actual running time. Experimental results in

Section 4 show that our algorithm performs quickly and smoothly in large social online

networks.

3.4 Experimental Results

In this section, we first present the empirical results of AFOCS in comaprison with

two static detection methods: CFinder - the most popular method [84], and COPRA -

the most effective method [40]. We next compare the performance of AFOCS with other

dynamic methods including OSLOM [60], FacetNet [71] and iLCD [9].

Data Sets: We use networks generated by the well-known LFR overlapping

benchmark [58], the ‘de facto’ standard for evaluating overlapping community detection

algorithms. Generated networks follow power-law degree distributions and contain

embedded overlapping communities (the ground truth) of varying sizes that capture the

internal characteristics of real-world networks.

71

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
C

o
m

m
u
n
it
ie

s

Overlapping fraction

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

A Number of communities

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

N
o
rm

a
liz

e
d
 M

u
tu

a
l
In

fo
rm

a
ti
o

n

Overlapping Fraction

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

OSLOMs

B NMI scores

Figure 3-8. Comparison among AFOCS, COPRA and CFinder methods. N = 5000 (top),
N = 1000 (bottom), µ = 0.1 (left), µ = 0.3 (right).

72

Set up: To fairly compare with COPRA and to avoid being biased, we keep the

parameters close to [40]: the minimum and maximum community sizes are cmin = 10

and cmax = 50, each vertex belongs to at most two communities, om = 2. N = 1000

and N = 5000. The mixing rate µ = 0.1 and µ = 0.3. The overlapping fraction γ,

which determines the fraction of overlapped nodes, is from 0 to 0.5. Since COPRA is

nondeterministic, we run it 10 times on each instance and select the best result.

Metrics: We evaluate following metrics.

(1) The generalized Normalized Mutual Information (NMI) [56] specially built for

overlapping communities. NMI scores the similarity between the detected network

communities and the ground truth. This is an standardized measure since NMI(U,V)=1 if

structures U and V are identical and 0 if they are totally separated.

(2) The number of communities, ignoring singleton communities and unassigned

nodes. A good community detection method should produce roughly the same number

of communities with the known ground truth.

3.4.1 Choosing the overlapping threshold β

The overlapping threshold β is the only input parameter required by our framework,

and thus, determining its appropriate value plays an important role in assessing

AFOCS’s performance. To best determine this threshold, we run AFOCS on generated

networks with different values of β, and record the similarities between the detected

communities and the ground-truth via NMI scores (Figure 3-7). Of course, the higher

NMI scores imply the better β values.

As a threshold parameter, β controls how much substructure communities can have

in common. The smaller values of β imply the more we allow network communities to

overlap with each other, and vice versa. Similarly, β can be thought of as the zooming

scale of the network structure where lower β’s reveal the coarser and higher β’s reveal

the finer structure. As depicted in Figure 3-7, the best values for β are ranging from 0.67

to 0.80, among which β = 0.70 yields the best community similarity (NMI scores are

73

ranging from 0.8 to 1) in all of the generated networks. Therefore, we fix the overlapping

threshold in AFOCS to be 0.70 hereafter.

3.4.2 Reference to static methods

We show our results in groups of four. For each case we vary the overlapping

fraction γ from 0 to 0.5 and analyze the results found by AFOCS, CFinder, COPRA

and (static) OSLOM methods (OSLOMs). We only present results when corresponding

parameters give top performance for CFinder (clique size k = 4, 5) and COPRA (max.

communities per vertex v = 3, 6).

Figure 3-8A shows the number of communities found by AFOCS, COPRA and

CFinder, OSLOMs and the ground truth. It reveals from this figure that the numbers

of communities found by AFOCS, marked with squares, are the closest and almost

identical to the ground truth as the overlapping fraction gets higher. There is an

exception when N = 1000 and µ = 0.3 which we will discuss later. In terms

of NMI scores, as one can infer from Figure 3-8B, AFOCS achieves the highest

performance among all methods with much more stable. A common trend in this

test is the performances of all methods degrade (1) when the mixing rate µ increases,

i.e., when the community structure becomes more ambiguous or (2) when the size of

network decreases while the mixing rate µ stays the same. Even though AFOCS is not

very competitive only when both negative factors happen in the bottom-right char as

N = 1000 and µ = 0.3, it is in general the best performer. OSLOMs , the static version

of OSLOM method, does not appear to perform well on these synthesized data as its

NMI scores are low and degrade quickly when the network communities become more

stochastic. The NMI scores of AFOCS, on the other hand, remain high and stable even

when the network community structure becomes unclear when the overlapping fraction

increases.

The significant gap is observed when the mixing rate gets higher (µ = 0.3) and the

network size gets smaller (N = 1000). AFOCS provides less numbers of communities

74

than those of the ground truth but with much higher overlapping rates. The reason is

with a larger mixing rate µ, a node will have more edges connecting vertices in other

communities, thus increases the chance that AFOCS will merge highly overlapped

communities. Hence, AFOCS creates less but with larger size communities. We note

that this ‘weakness’ of AFOCS is controversial as when the mixing rate increases, the

ground truth does not necessarily coincide with the structure implied by the network’s

topology. Extensive experiments show the ability of AFOCS in identifying high quality

overlapping communities. In addition, we found AFOCS runs substantially faster than

the other competitors: on the Facebook regional network [100] containing 63K nodes,

AFOCS is 150x faster than COPRA while CFinder is unable to finish its tasks.

3.4.3 Reference to other dynamic methods

We next observe the performance of AFOCS in reference to two dynamic methods

FacetNet, iLCD and OSLOM. Since the ground-truth communities are known on

synthesized datasets, fair comparisons among three methods can be obtained via

their NMI scores and running times. Of course, the higher its NMI scores with less time

consuming, the better the method seems to be.

Each synthesized dynamic network is simulated via 5 snapshots, in which the basic

communities are formed by using 50% of the network data with approximately 10%

of the network evolution (node/edge additions and removals) added to each growing

snapshot at a time. Since FacetNet requires the number of communities a priori, we

input this method the actual number as mined form the ground-truth. For iLCD and

OSLOM methods, we keep the default setting as provided in their deliverable.

We first evaluate the objective function, i.e., the total internal density obtained by

all methods in Figure 3-9A. Although internal density is not necessarily the objective

of other methods, this metric can provide us the concept of how strong the community

structure detected by each approach is. As revealed Figure 3-9A, AFOCS obtained the

highest internal density in all tests and is only lagged behind iLCD approach.

75

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

Ψ
(C

)
(N

=
1
0
0

0
,

µ=
0

.1
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5

Ψ
(C

)
(N

=
1
0
0

0
,

µ=
0

.3
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

Ψ
(C

)
(N

=
5

0
0

0
,

µ=
0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5

Ψ
(C

)
(N

=
5

0
0

0
,

µ=
0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

A Objective values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1
0

0
0

,
µ=

0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1
0

0
0

,
µ=

0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5
0
0
0
,

µ=
0
.1

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5
0
0
0
,

µ=
0
.3

)

Time point

AFOCS
iLCD

FacetNet
OSLOM

OSLOMs

B NMI scores

Figure 3-9. Comparison among AFOCS, iLCD, FacetNet and OSLOM dynamic methods.

76

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

#
 o

f
c
o
m

m
u

n
it
ie

s
 (

N
=

1
0
0

0
,

µ=
0

.1
)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

#
 o

f
c
o
m

m
u

n
it
ie

s
 (

N
=

1
0
0

0
,

µ=
0

.3
)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0

0
0
,

µ=
0

.1
)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0

0
0
,

µ=
0

.3
)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

Figure 3-10. The number of communities obtained by AFOCS, iLCD, FacetNet and
OSLOM and OSLOMs methods.

The NMI scores of four methods are presented in Figure 3-9B and 3-10. It reveals

from these subfigures that the NMI scores of AFOCS are higher than those of FacetNet,

iLCD and OSLOM. In particular, the NMI scores of AFOCS are about just 5-7% lag

behind that of OSLOM and iLCD in the first 2 network snapshots, while are much better

than the others at the end of the evolution. OSLOM’s NMI values are very high at

the very beginning, however, they tend to decrease quickly as more connections and

nodes are introduced. The NMI scores of iLCD and FacetNet tend to fluctuate and also

decrease significantly at the last snapshot. AFOCS, in the other trend, keeps its NMI

scores high and wealthy, especially at the end of the network evolution. This implies

communities discovered by AFOCS are of higher similarity to the ground-truth than

77

the other dynamic methods, especially in the long run. The number of communities

found by all methods are reported in Figure 3-10. Of course, the closer these detected

numbers of communities to the ground-truth, the better the method are believed to be.

As revealed in the subfigures of Figure 3-10, these quantities discovered by AFOCS

tend to closely approach the actually numbers, even when the mixing rates are high

(right figures). The highest similarity between these numbers of communities is possibly

the best explanation for the high NMI scores of AFOCS over the other competitors.

We next take a look at the running time of all methods in these synthesized

networks. AFOCS requires at most 5 seconds to finish updating each network snapshot

whereas FacetNet asks for more than 25 seconds (5x more time consuming) in the

networks with just 5000 nodes. iLCD and OSLOM also perform fast in these generated

datasets; however, the similarity of the detected communities and the ground-truth

is surprisingly poor, as revealed from the results. Therefore, in terms of dynamic

approaches, we strongly believe that AFOCS achieves competitive community detection

results in a timely manner. These results also provide us the confidence when applying

AFOCS to analyze real-world networks.

78

CHAPTER 4
COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX

FACTORIZATION

In this chapter, analyze two approaches, namely iSNMF and iANMF, for effectively

identifying social network communities using Nonnegative Matrix Factorization (NMF)

with I-divergence (Kullback-Leibler divergence) as the cost function. Our approaches

work by iteratively factorizing a nonnegative input matrix through derived multiplicative

update rules and the Quasi-Newton method. By doing so, we can not only extract

meaningful overlapping communities via soft community assignments produced by

NMF but also nicely handle both directed and undirected networks with or without

weights. We give the complete multiplicative update rules for factorizing X ≈ HHT

(iSNMF problem) and X ≈ HSHT (iANMF problem) to effectively identify overlapping

communities on social networks. These approaches are topology-independent and their

solutions can be easily interpreted. We provide in detail the foundation properties as

well as the proofs of correctness and convergence of both iSNMF and iANMF problems.

We also propose the Quasi-Newton method to speed up the performance of iSNMF

update rule. Furthermore, we validate the performance of our approaches through

extensive experiments on not only synthesized datasets but also real-world networks.

Empirical results show that iSNMF is among the best efficient detection methods on

undirected networks while iANMF outperforms current available methods in directed

networks, especially in terms of detection quality.

4.1 Problem Definition and Properties

4.1.1 Motivation for NMF in community detection

Let us first get some insight about how NMF can be helpful in detecting network

communities, especially overlapping ones. Consider the toy network G = (V ,E)

pictured in Figure 4-1. This network contains clear communities C1 and C2 having node

4 in common. The adjacency matrix X of this ideal network can be represented as

79

C1 C2

1

2

3

5

6

7 8

4

Figure 4-1. An illustrative example motivating NMF in community detection

X =

S1 0

0 S2

, where S1 and S2 are 4 × 4 and 5 × 5 square matrices corresponding to

C1 and C2, respectively. This adjacent matrix X summarizes all the network information

and is the only thing we have. So, how can we derive back the appropriate communities

(or the community indicators) only from this matrix? This is where NMF comes into the

picture and helps. In particular, the special NMF factorization X ≈ HSHT gives us H and

S as the community indicator and the community internal-strength indicator matrices,

respectively. In this example, X ≈ HSHT factorization realizes S = I2 and

HT =

1 1 1 .87 0 0 0 0

0 0 0 .89 0.99 0.99 0.99 0.99

Matrix H clearly indicates that nodes 1-3 should be in a community and nodes 5-8

should belong to another one. H also advises that node 4 should be an overlapping

node due to its significant contribution to both communities. These assignments

indeed reflect the true nodes’ labels. In addition, matrix S indicates that each detected

community attains its perfect internal strength, which intuitively agrees with the original

clique structures. This illustrative example, though simple, motivates the application

80

of the NMF factorization X ≈ HSHT in community detection. Note that when X is

symmetric (i.e., the network is undirected), S is also symmetric and thus, can be further

absorbed into H by the assignment H ← HS1/2. Hence, the problem is reduced to

X ≈ HHT only when X is symmetric.

4.1.2 Problem definitions

In order to quantify the goodness of the approximation, we use the I-divergence

(Kullback-Leibler (KL) divergence) between two nonnegative matrices A and B

suggested by [64] as

D(A||B) =
∑
ij

(
Aij log

Aij

Bij

− Aij + Bij

)
Due to the inequality x log x ≥ x − 1 ∀x > 0, it is easy to see D(A||B) is lower bounded

by zero and vanishes if and only if A = B. However, unlike the Euclidean distance, this

function is not symmetric in A and B, so we refer to it as the “divergence” from A to B.

The smaller the divergence between A and B, the more similar they are. Therefore, our

objectives seek for the factorizations X ≈ HHT and X ≈ HSTH such that D(X ||HHT)

and D(X ||HSHT) are minimized. Formally, the problems we are interested in can be

stated as follows (here the little “i” comes from the I-divergence)

Problem 1 (iSNMF) Given a nonnegative symmetric matrix X , find a matrix H ≥ 0

that minimizes DX (HH
T) ≡ D(X ||HHT)

Problem 2 (iANMF) Given a nonnegative asymmetric matrix X , find matrices

H,S ≥ 0 that minimize DX (HSH
T) ≡ D(X ||HSHT)

4.1.3 Properties of iSNMF and iANMF factorizations

By Lemma 13, we give important properties of iSNMF and iANMF: the divergences

DX (HH
T) and DX (HSH

T) are convex in S only or H only; however, they are not convex

in both variables together. Although the same observations have been proposed for

the general NMF problem on both Frobenius and I-divergence cost functions [64], no

81

claim has been made particularly for the iSNMF and iANMF problems, especially on the

I-divergence function.

Lemma 13. The divergences DX (HH
T) and DX (HSH

T) in iSNMF and ANMF are convex

in H or S only but not in both S and H together.

Proof. (Convexity in S) Suppose H is a fixed matrix. For any number α, β ∈ [0, 1] and

α+ β = 1, we have

DX (H(αS1 + βS2)H
T) ≤ αDX (HS1H

T) + βDX (HS2H
T),

if and only if

−
∑
ij

log (α[HS1H
T]ij + β[HS2H

T]ij) ≤ −α
∑
ij

log [HS1H
T]ij − β

∑
ij

log [HS2H
T]ij

for any matrices S1,S2 ≥ 0. The later inequality holds true due to the convexity of − log()

function and Jensen’s inequality. Thus, DX (HSH
T) is convex in S when H is fixed.

(Convexity in H) Assume S is a fixed matrix. Rewrite

DX (HSH
T) =

∑
ij

Xij(logXij − 1)−
∑
ij

Xij log [HSH
T]ij +

∑
ij

[HSHT]ij

. Since the first term is a constant and − log() is a convex function, we need to show that

the last term is also convex in H. Let f (H) =
∑

ij [HSH
T]ij . Now,

αf (H1) + βf (H2)− f (αH1 + βH2) = αβ
∑
ij

(
[H1SH

T
1]ij − [H2SH

T
1]ij − [H1SH

T
2]ij + [H2SH

T
2]ij
)

= αβ
∑
ij

[(H1 − H2)S(H1 − H2)
T]ij ≥ 0

(since S ≥ 0 and
∑

ij [AA
T]ij ≥ 0 for any matrix A). This implies the convexity in H of

DX (HSH
T).

The convexity of H in iSNMF is derived similarly as above when S is similar to I , the

identity matrix. The nonconvexity in both S and H follows from the general NMF case

[64].

82

The above properties are nontrivial since they tell us it is unrealistic to solve either

iSNMF or iANMF problem for global minima, and consequently give us the hope to use

other techniques such as Project Gradient [14], Quasi-Newton [108] or particularly the

Alternating Lease Square (ALS) [15] methods to quickly find a local minima. However,

by Lemma 14, we show that for iSNMF and iANMF problems, employing the traditional

ALS does not provide any speed up since we can neither independently update the

columns of S nor H at the same time, thus prevent the employment of this technique to

our problems.

Lemma 14. Employing ALS method does not provide any speed up to either iSNMF or

iANMF.

Proof. Let us first review the ALS method’s working mechanism on the general NMF

problem X ≈WH. Given X ≥ 0, the ALS method does the following steps [5]

1. Randomly initialize W 1
ia ≥ 0,H1

bj ≥ 0, ∀i , a, b, j

2. For k = 1, 2, ... alternatively update W k+1 and Hk+1 by
W k+1 = argminW≥0DX (WHk), and Hk+1 = argminH≥0DX (W

k+1H);

The main idea of the ALS method is to solve each minimization problem as the

collection of several non-negative independent least square problems, due to the

uncorrelated relationship between W and H. For instance, one can write Hk+1 =

argminH≥0D(X ||W k+1H) as Hk+1’s j th column = minh≥0D(x||W k+1
h), where

x is the j th column of X and h is a column vector of appropriate size. Therefore,

each sub-minimization problem requires only the values of a specific column and

consequently can be done in a parallel manner. Since H and HT are strongly related, it

is inappropriate to apply ALS method to iSNMF problem. For ANMF problem, we first

note that [HSHT]ij =
∑

tk HikHjtSkt , which implies an entry in HSHT already requires all

values of S even when H is fixed. Therefore, should one try to update a single column

of S independently as suggested in S-phase of the ALS method, he has to repeatedly

83

solve for all elements Skt ’s, which may incur even more computational requirements.

Thus, the conclusion follows.

4.2 The Update Rule for iSNMF

4.2.1 Multiplicative update rule

We present our solution for iSNMF when the input matrix X is symmetric. Formally,

given a nonnegative symmetric matrix X of size n × n and an integer number K ≪ n, we

need to find a nonnegative matrix H of size n × K such that DX (HH
T) ≡ D(X ||HHT) is

minimized.

We solve this problem using the Karush-Kuhn-Tucker (KKT)[13] conditions. In

particular, we introduce the Lagrange multipliers αij for the constraints Hij ≥ 0 and

consider the objective function J = D(X ||HHT)−
∑

ij αijHij , or,

J =
∑
ij

(
Xij log

Xij

[HHT]ij
− Xij + [HHT]ij

)
−
∑
ij

αijHij

The KKT conditions require

∂J

∂Hab

= 0 (or
∂DX (]HH

T)

∂Hab

= αab)

as the optimality condition and

αabHab = 0

as a complementary slackness condition for any Hab.

For the ease of computation, we construct the derivative matrix HHT with respect to

Hab in Figure 4-2. For each position (a, b), this derivative matrix is zero elsewhere except

for the ath column and ath row whose elements are from the bth column of H. Using this

matrix, we obtain
∂DX (HH

T)

∂Hab

= 2

(∑
k

Hkb −
∑
k

Hkb

Xak

[HHT]ak

)
. (4–1)

84

Hkb

(k=1 ..N)

ath column

ath row

2Hab

HHT

Figure 4-2. The partial derivative matrix of HHT with respect to Hab.

Hence, the optimality condition implies

αab = 2(
∑
k

Hkb −
∑
k

Hkb

Xak

[HHT]ak
),

and thus, the complementary slackness condition requires

2
(∑

k

Hkb −
∑
k

Hkb

Xak

[HHT]ak

)
Hab = 0,

which suggests the following update rule

Hab ← Hab

∑
k HkbXak/[HH

T]ak∑
t Htb

. (4–2)

In terms of projected gradient method, the rule above can be obtained by using the

update rule

Hab ← Hab − νab
∂DX (HH

T)

∂Hab

,

with the magnitude νab set to some appropriate small positive number. Here, setting

νab =
Hab

2
∑

t Htb

85

leads to the same update rule as (4–2).

The iSNMF community detection algorithm is described in Alg. 13. Here, n0 is

the maximum number of iterations, ϵ is the allowed threshold for the quality of iSNMF

approximation and α is a given scale to determine community memberships. We

assume that K , the number of communities, is predetermined or given as part of the

input. Also, the choice of α will be described later.

Algorithm 13 SNMF for community detection
Input: Undirected, unweighted (weighted) adjacent matrix X , K , n0, ϵ, α;
Output: Community indicator matrix H;

1: Initialize H to be a random nongnegative matrix;
2: iter ← 0;
3: while (iter ≤ n0) and (DX (HH

T) > γ) do
4: Update Hab ← Hab

∑
k HkbXak/[HH

T]ak∑
t Htb

;
5: iter ← iter + 1;
6: end while
7: % Inferring community labels from H%
8: Cb ← ∅ ∀b = 1...K ;
9: P ← normalized(H);

10: for b ← 1...p do
11: if P(a, b) ≥ α ∗max(P(a, :)) then
12: Cb ← Cb ∪ {a};
13: end if
14: end for

Remark

In contrast to those update rules found in [64], we have shown an important fact:

These rules can be derived similarly for this special case. However, our multiplicative

update rule (4–2) is not trivial in the sense that we can obtain the convergence proof for

our proposed rule whereas one may find it inappropriate to adapt the proof of [64][16]

which assumed absolutely no correlation between W and H.

Analysis

We provide the convergence analysis for our proposed update rule (4–2) using an

auxiliary function defined as follow:

86

(Auxiliary function) G(h, h̃) is the auxiliary function for F (h) if the conditions

G(h, h̃) ≥ F (h) and G(h, h) = F (h) are satisfied

Lemma 15. [64] If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = argminh G(h, h̃).

To prove the convergence of the proposed multiplicative update rule, we construct

an auxiliary function G(H, H̃) of F (H) ≡ DX (HH
T) as follow

G(H, H̃) =
∑
ij

(
Xij logXij − Xij + [HHT]ij

)
−
∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
logHikHjk − log

HikH̃jk∑
t HitH̃jt

)

Theorem 4.1. The divergence DX (HH
T) is nonincreasing under the update rule (4–2)

and is invariant when H is at its stationary point of the divergence.

Proof. When H̃ = H, it is easy to verify that G(H,H) = F (H), thus we only need to

check G(H, H̃) ≥ F (H). Now, G(H, H̃) ≥ F (H) iff

−
∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
logHikHjk − log

HikH̃jk∑
t HitH̃jt

)
≥ −

∑
ij

Xij log[HH
T]ij = −

∑
ij

Xij log
(∑

k

HikHjk

)
⇐⇒ −

∑
ijk

Xij

HikH̃jk∑
t HitH̃jt

(
log

HikHjk ×
∑

t HitH̃jt

HikH̃jk

)
≥ −

∑
ij

Xij log
(∑

k

HikHjk

)
.

To prove the above inequality, we apply Jensen’s inequality to the convex function

− log
(∑

k HikHjk

)
, yielding

− log
∑
k

αk
HikHjk

αk
≤ −

∑
k

αk log
HikHjk

αk
,

where αk ≡ αijk =
Hik H̃jk∑
t Hit H̃jt

. It is obvious that αk ’s are nonnegative and sum up to unity.

Thus, we have G(H, H̃) ≥ F (H). Taking the derivative of G(H, H̃) with respect to H also

gives the same update rule (4–2).

87

4.2.2 Quasi-Newton method for iSNMF

One of the problems with the multiplicative update rule is its slow convergence,

i.e., it does converge to (possible) stationary point but may be slow, taking more

iterations and time, as well as easily getting into local minima trap [5]. One way to

speed up the convergence is to adjust the learning rate in a sequential manner, using

the second-order estimate of the objective function, e.g. the Quasi-Newton method. In

[108], the authors already addressed this method for the general NMF X ≈ WH but with

the uncorrelated relationship assumption between W and H. Obviously, that assumption

does not hold when X ≈ HHT and hence, it is not trivial to derive proper Quasi-Newton

formulation for iSNMF problem. In fact, we show that the second-order, or Hessian,

matrix H(H)
DX

of iSNMF is much different from that of the general NMF.

The general Quasi-Newton method, when applied to iSNMF problem, takes the form

H ← max

{
H − [H(H)

DX
]−1∂DX

∂H
, ϵ

}
, (4–3)

where DX is short for DX (HH
T), ∂DX

∂H
is the n × K first-order matrix of DX (HH

T) w.r.t H,

H(H)
DX

is the nK × nK second-order derivative (or Hessian) matrix of DX w.r.t to H and ϵ

is a small nonnegative number to enforce the nonnegativity of H. Thanks to equation

(4–1), the first-order derivative matrix ∂DX

∂H
can be found as

∂DX

∂H
= 2

(
1− X ./HHT

)
H,

where 1 is a N × N matrix of all 1’s and ./ is the Hadamard (element-wise) division. For

any pair (i , j), the Hessian matrix H(H)
DX

can be found by: [H(H)
DX

]ij =
∂DX

∂HijHab
=

2
(
1− Xii ([HH

T]ii−2H2
ij
)

[HHT]2
ii

+
∑

k ̸=i
H2
ik
Xik

[HHT]2
ik

)
a = i , b = j

2
(2HibHijXii

[HHT]2
ii

+
∑

k ̸=i
HkbHkjXik

[HHT]2
ik

)
a = i , b ̸= j

2
(
1− Xak([HH

T]ai−HijHaj)

[HHT]2
ai

)
a ̸= i , b = j

2
(
HibHajXai

[HHT]2
ai

)
a ̸= i , b ̸= j

(4–4)

88

There are two important differences between the Hessian HNMF for the general

case [108] and H(H)
DX

. Firstly, HNMF ’s elements are zeros everywhere except when

a = i , b = j whereas H(H)
DX

obtains values for all combinations of a, b, i and j . Secondly,

due to its sparseness, HNMF can be written under matrix block form while H(H)
DX

might not

be, particularly when it is a full matrix. Therefore, updating H in iSNMF problem is much

more complicated than usual since finding [H(H)
DX

]−1 in (4–3) shall require more numerical

computations.

The authors in [108] also proposed a numerical technique to overcome the

ill-conditioned Hessian matrix and to speed up the computing process, which we

find it useful when applied to our problems. Here, we briefly state their technique so that

the paper is self-contained (note that (4–5) and (4–6) are not our equations): To reduce

the computational cost, the inversion of the Hessian is replaced with the Q-less QR

factorization computed by LAPACK. The final form of the Quasi-Newton method is

H ← max
{
H − γRH |WH , ϵ

}
(4–5)

WH = QT
H

∂DX

∂H
, QHRH = H(H)

DX
+ λIH (4–6)

where IH is the nK × nK identical matrix, γ = 10−12 and λ = 0.9 are the small fixed

regularization and the relax parameters, respectively. The | operator in (4–5) means the

Gaussian elimination.

4.3 Update Rules for iANMF

4.3.1 Multiplicative update rules

In this section, we present our solution for the iANMF problem when X is not

symmetric. Formally, given a nonegative asymmetric matrix X of size n × N, we

find nonnegative matrices H and S of size n × K and K × K , respectively, such that

DX (HSH
T) ≡ D(X ||HSHT) is minimized. We again solve this problem using the

KKT conditions by introducing the Lagrange multipliers αij and βij for the constraints

89

Hij ≥ 0 and Sij ≥ 0, respectively, and then consider the objective function J =

D(X ||HSHT)−
∑

ij αijHij −
∑

ij βijSij . Equivalently, J can be written as

J =
∑
ij

(
Xij log

Xij

[HSHT]ij
− Xij + [HSHT]ij

)
−
∑
ij

αijHij −
∑
ij

βijSij .

The KKT conditions require
∂J

∂Hab

= 0 and
∂J

∂Sab
= 0,

or equivalently,
∂DX (HSH

T)

∂Hab

= αab and
∂DX (HSH

T)

∂Sab
= βab

as the optimality conditions, as well as

αabHab = 0 and βabSab

as a complementary slackness condition for any Hab and Sab. For the ease of computation,

we construct the matrix for finding the derivative of an entry [HSHT]ij with respect to any

Hab in Figure 4-3. Here r(A, i) and c(B, j) mean the i th row of A and j th column of B,

respectively. Elements outside of the plotted column and row are zeros. The elements

of this matrix are zeros elsewhere except for the ath column and ath row. Using this

conventional partial derivative matrix, we obtain

∂
∑

ij Xij log [HSH
T]ij

∂Hab

=
∑
k

Xka

[HS]kb
[HSHT]ka

+
∑
k

Xak

[SHT]bk
[HSHT]ak

and
∂
∑

ij [HSH
T]ij

∂Hab

=
∑
k

([HS]kb + [SHT]bk)

90

ath column

ath row

HSHT

r(H,1)×c(S,b)

r(H,2)×c(S,b)

r(H,3)×c(S,b)

r(H,n)×c(S,b)

r(S,b)×c(HT,1) r(S,b)× c(HT,2) r(S,b)×c(HT,n) … …

…

…

 r(H,a)×c(S,b) + r(S,b)×c(HT,a)

Figure 4-3. The partial derivative matrix of HSHT with respect to Hab.

Therefore,

∂DX (HSH
T)

∂Hab

=
−∂
∑

Xij log [HSH
T]ij +

∑
[HSHT]ij

∂Hab

= −
∑
k

Xka

[HS]kb
[HSHT]ka

−
∑
k

Xak

[SHT]bk
[HSHT]ak

+
∑
k

([HS]kb + [SHT]bk). (4–7)

The optimality condition ∂DX (HSH
T)

∂Hab
= αab and the complementary slackness condition

αabHab = 0 together give the following update rule for Hab

Hab ← Hab

(∑
k Xka[HS]kb/[HSH

T]ka∑
t [HS]tb + [SHT]bt

+

∑
k Xak [SH

T]bk/[HSH
T]ak∑

t [HS]tb + [SHT]bt

)
(4–8)

Alternatively, this update rule can also be achieved by using projected gradient

method, in particular by updating

Hab ← Hab − νab
∂DX (HSH

T)

∂Hab

with the magnitude

νab =
Hab∑

t([HS]tb + [SHT]bt)
.

91

Now we give the multiplicative update rule for any Sab. The partial derivative of

DX (HSH
T) w.r.t Sab is derived as

∂DX (HSH
T)

∂Sab
=
∑
st

HsaHtb −
∑
st

Xst

HsaHtb

[HSHT]st

The KKT conditions ∂DX (HSH
T)

∂Sab
= βab and βabSab = 0 together imply the following update

rule for Sab

Sab ← Sab

∑
st HsaHtb(Xst/[HSH

T]st)∑
st HsaHtb

(4–9)

Alternatively, this rule can be derived by the projected gradient method

Sab ← Sab − νab
∂DX (HSH

T)

∂Sab

with magnitude

γab =
Sab∑

st HsaHtb

.

The iANMF community detection is presented in Alg. 14. The parameters and their

meanings in this case are similar to those described in the SNMF case.

Algorithm 14 iANMF for community detection
Input: Directed, unweighted (weighted) adjacent matrix X , K , n0, ϵ, α;
Output: Matrices H and S and the inferred community labels;

1: Initialize H and S to be a random nongnegative matrices;
2: iter ← 0
3: while (iter ≤ n0) and (DX (HH

T) > γ) do
4: Update Hab based on equation (4–8);
5: Update Sab based on equation (4–9);
6: iter ← iter + 1;
7: end while
8: % Inferring community labels from H%
9: Cb ← ∅ ∀b = 1...K ;

10: P ← normalized(H);
11: for b ← 1...K do
12: if P(a, b) ≥ α ∗max(P(a, :)) then
13: Cb ← Cb ∪ {a};
14: end if
15: end for

92

Summary

With the multiplicative update rules (4–8) and (4–9), we give the complete steps

for iteratively solving iANMF problem with respect to the I-divergence. These rules are

different from what have been discovered in prior studies and, to our knowledge, have

not yet been derived in the literature. Thus, they are our contributions in this paper.

Analysis

We first show the following result

Theorem 4.2. At the stationary point (H,S) of DX (HSH
T), KKT conditions imply that

∑
st

Xst =
∑
st

[HSHT]st

Proof. We show that the condition Sab
∂DX (HSH

T)
∂Sab

= 0 imply the above equality. In

particular, the KKT condition equals to

Sab
∑
st

HsaHtb = Sab
∑
st

Xst

HsaHtb

[HSHT]st
.

Summing over all a and b of the LHS gives

∑
ab

Sab
∑
st

HsaHtb =
∑
st

∑
ab

HsaSabHtb =
∑
st

[HSHT]st .

Similarly, summing over all a and b of the RHS gives

∑
ab

∑
st

Xst

HsaHtb

[HSHT]st
=
∑
st

Xst

[HSHT]st
[HSHT]st

=
∑
st

Xst .

Therefore, the equality follows.

We next analyze the convergence analysis of our proposed rules (4–8) and (4–9).

By using appropriate auxiliary functions G(S , S̃) and G(H, H̃), one can show the

following

Theorem 4.3. The divergence D(X ||HSHT) is nonincreasing under the update rules

(4–8) and (4–9) and is invariant if and only if S and H are at their stationary points in the

divergence.

93

Proof. The proof of convergence for the two update rules (4–8) and (4–9) is similar to

Theorem 4.1. Let us first define two functions

G(S , S̃) =
∑
ij

Xij(logXij − 1) +
∑
ij

[HSHT]ij −
∑
ij

Xijβijuv(logHivSvuHju − log βijuv),

and G(H, H̃) =
∑
ij

Xij(logXij − 1) +
∑
ij

[HSHT]ij −
∑
ij

Xijξijuv(logHivSvuHju − log ξijuv).

where βijuv =
Hiv S̃vuHju∑
st Hit S̃tsHjs

, ξijuv =
HivSvuH̃ju∑
st HitStsH̃js

.

It is clear that each βijuv ’s and ξijuv ’s are nonzero and sum up to unity. We now prove

the convergence of rule (4–9) for S when matrix H is fixed. Let F (S) = DX (HSH
T). We

show that G(S , S̃) defined above is an auxiliary function for F (S). When S̃ = S , one

can verify that G(S , S̃) = F (S), thus we need to check G(S , S̃) ≥ F (H). This inequality

equals to

−
∑
ij

Xij log [HSH
T]ij ≤ −

∑
ij

Xijβijuv(logHivSvuHju − log βijuv)

By the definition of βijuv , one can rewrite the above inequality as

− log
∑
ij

βijuv
HivSuvHju

βijuv
≤ −

∑
ij

βijuv log
HivSvuHju

βijuv

which generally holds true due to Jensen’s inequality and the convexity of − log()

function. Now, taking the derivative of G(S , S̃) with respect to S gives the update rule

(4–9). The proof for H can be obtained in a very similar manner with and thus, is omitted

here.

4.4 Experimental Results

In this section, we first validate our approaches on different synthesized networks

with known ground-truths, and then present our findings on real-world traces including

the Enron email [98] and Facebook social network [87]. To certify our performance, we

94

compare the results to two NMF methods proposed in [102] (i.e., wSNMF and wANMF),

and the recently suggested Bayesian NMF [90] (i.e., Bayesian method).

Our methods require the number of communities K as an input parameter. We

stress that determining this quantity is not the main focus of NMF-based detection

methods since almost all of them rely on a predefined K to discover the network

communities, as commonly observed in [102][67][70]. Thefore, this quantity K

is predetermined using a procedure suggested in [80], which has been shown to

well-predict the number of network communities in a timely manner. We also use this

value as input for wSNMF and wANMF. For the Bayesian method, we keep the default

settings as provided in its deliverable.

4.4.1 Empirical results on synthesized networks

Of course, the best way to evaluate our approaches is to validate them on real-world

networks with known community structures. Unfortunately, we often do not know that

structures beforehand, or such structures cannot be easily mined from the network

topologies. Although synthesized networks might not reflect all the statistical properties

of real ones, they can provide us the known ground-truths via planted communities and

the ability to vary other network parameters such as sizes, densities and overlapping

levels, etc. Testing community detection methods on generated data has becomes a

usual practice that is widely accepted in the field [58]. Therefore, running iSNMF and

iANMF on synthesized networks not only certifies their performance but also provides us

the confidence to their behaviors when applied to real-world traces.

Set up: We use the well-known LFR overlapping benchmark [57] to generate 22

weighted directed and undirected testbeds. Generated networks follow the power-law

degree distribution and contain embedded overlapping communities of varying sizes

that capture the internal characteristics of real-world networks. Parameters are: the

number of nodes N = 1000, the mixing parameter µ = 0.1 and 0.3 controlling the overall

sharpness of the community structure, the weight mixing µw = 0.1 and 0.3, the minimum

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.1
)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.3
)

Overlapping Threshold (b)

iSNMF
wSNMF

Bayes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.1
)

Overlapping Threshold (c)

iANMF
wANMF

Bayes
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

N
M

I
(µ

 =
 0

.3
)

Overlapping Threshold (d)

iANMF
wANMF

Bayes

Figure 4-4. Normalized Mutual Information scores on synthesized networks

and maximum community sizes cmin = 10 and cmax = 50, the maximum memberships of

a node om = 2, and the overlapping fraction γ ∈ [0, 0.5] measuring the fraction of nodes

with memberships in more than communities. We set the number of iterations to 400 in

all methods and run 22 tests 100 times for consistency.

Metric: To measure the similarity between detected communities and the

embedded ground-truth, we evaluate Generalized Normalized Mutual Information

(NMI) [56]. NMI (U,V) is 1 if structures U and V are identical and is 0 if they are totally

separated. This is the most important metric for a community detection algorithm

because it indicates how good the algorithm is in comparison with the true communities.

The higher the NMI value to the ground-truth, the better.

Detection quality: As depicted in Figure 4-4, our approaches iSNMF and iANMF

achieve the most stable and competitive (if not to say the best) NMI scores on both

96

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s
 (

µ
 =

 0
.1

)

Overlapping Threshold (e)

iSNMF
wSNMF

Bayes
GroundTruth

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s
 (

µ
 =

 0
.3

)

Overlapping Threshold (f)

iSNMF
wSNMF

Bayes
GroundTruth

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s
 (

µ
 =

 0
.1

)

Overlapping Threshold (g)

iANMF
wANMF

Bayes
GroundTruth

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s
 (

µ
 =

 0
.3

)

Overlapping Threshold (h)

iANMF
wANMF

Bayes
GroundTruth

Figure 4-5. Number of communities on synthesized networks

weighted directed and undirected networks. In particular, on undirected networks (top

2 figures), NMI scores produced by iSNMF are highly competitive to those of wSNMF

and are up to 84% better than those returned by the Bayesian method. Moreover, its

NMI scores still remains high and balance as the mixing overlapping ratio γ increases.

This means the communities discovered by iSNMF are consistently of high similarity to

the ground-truth even when more and more network communities are overlapped with

each other. wSNMF also displays these properties on undirected networks; however, its

performance degrades significantly on directed weighted networks, as we will discuss

shortly. The Bayesian method, on the other hand, produces very low NMI values that

tend to decrease quickly as γ increases. This implies communities detected by this

method are not ideally coincident with the embedded ones, especially when they highly

overlap with each other.

97

There is a close relationship between the number of communities and the

identification capacity that we observed in the case of undirected networks in Figure

4-5. As revealed in its top figures, the input numbers of communities for iSNMF and

iSNMF are almost identical to the ground-truth when µ = 0.1 and slightly deviate from

them when µ = 0.3, while those of the Bayesian method are far away from the baseline.

This close relationship, as a result, helps iSNMF and wSNMF to determine a proper

number of basic features and consequently, indicate more appropriate community labels.

However, this observation does not appear to hold for wANMF on directed networks

since it performs poorly whereas our approach iANMF still performs excellently on

this type of networks (Figure 4-4, bottom figures). The big gap between the Bayesian

method and the ground-truth implies its built-in estimate of the number of communities

could potentially mislead the factorization, thus results in its low NMI scores.

The superiority of our iANMF approach becomes more visible on directed weighted

networks (Figure 4-4, bottom figures). In these figures, iANMF returns the best

stable NMI values and they remain wealthy even when γ evolves, i.e., when strongly

overlapped communities appear. In particular, the NMI scores returned by iANMF

are more than twice those of wANMF and are up to 10% those of Bayesian method.

The performance of wANMF, surprisingly, reduces to no more than half of its prior

achievement even when fed with the relatively close number of true communities

(bottom figures of Figure 4-5). This in turn indicates the communities discovered by

wANMF are heavily deviated from and are of very low similarity to the ground-truth.

Bayesian method’s performance is somehow the same on these directed networks with

average NMI scores tend to quickly decrease in the long run. This comparison among

three NMF factorizations reveals that iSNMF and iANMF are the best ideal methods

for effectively recovering the overlapped network community structures, especially on

weighted and directed networks.

98

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

R
u
n
n
in

g
 T

im
e
 (

µ
 =

 0
.1

)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5

R
u
n
n
in

g
 T

im
e
 (

µ
 =

 0
.3

)

Overlapping Threshold (a)

iSNMF
wSNMF

Bayes

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

R
u
n
n
in

g
 T

im
e
 (

µ
 =

 0
.1

)

Overlapping Threshold (a)

iANMF
wANMF

Bayes

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

R
u
n
n
in

g
 T

im
e
 (

µ
 =

 0
.3

)

Overlapping Threshold (a)

iANMF
wANMF

Bayes

Figure 4-6. Running Time on synthesized networks

We next compare the running time of three methods. As reported in Figure 4-6,

the running times of iSNMF and wSNMF on undirected networks are fairly similar to

each other (at most 2s difference) and are much less than the huge time requirement

of the Bayesian method. In average, the Bayesian method requires almost 200s in

order to finish the test whereas iSNMF and wSNMF only ask for roughly 16s and

14s, respectively. On directed networks, iANMF requires nearly the same amount

of time of the Bayesian method and much more time than wANMF. Note that this

time consumption of iANMF is quite understandable because each update for Sab

in equation (4–9) based on the I-divergence already took O(n2) time. However, the

superiority of its produced NMI scores to other competitors makes iANMF a promising

approach, especially suited for those who strive to discover excellent network community

structures.

99

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5

N
u
m

b
e
r

o
f
C

o
m

m
u
n
it
ie

s

Top 5 Communities

Enron

Facebook-like

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

C
o
m

m
u
n
it
y
 D

e
n
s
it
y

Top 5 Communities

Enron

Facebook-like

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

O
v
e
rl
a
p
p
in

g
 R

a
ti
o

Top 5 Communities

Enron

Facebook-like

Figure 4-7. The number of communities, Internal density and Overlapping ratio of Enron
email and Facebook-like datasets

In summary, comparisons among three algorithms on generated networks show

that (1) iSNMF is among the best NMF methods for efficiently identify high quality

overlapping communities in weighted and unweighted undirected networks (2) iANMF is

the best among three methods for analyzing weighted and directed networks containing

highly overlapped communities, despite it long running time. More importantly, the

performance of both approaches remains healthily stable even when more and more

overlapping communities are introduced. These results provide us the strong confidence

when applying iSNMF and iANMF to analyze the real-world traces.

4.4.2 Results on real networks

We next utilize iANMF and iSNMF to analyze the real network datasets and present

our findings on their overlapping structures. In particular, we choose the Enron email

dataset and the Facebook-like social network [87]. The Enron email network contains

email messages data from about 150 users, mostly senior management of Enron Inc.,

from Jan 1999 to July 2002 [98]. Each email address is represented by an unique

identification number in the dataset and each link corresponds to a message sent

between the sender and the receiver. The Facebook-like social network is collected from

students of University of California, Irvine. The dataset contains 20296 messages sent

and received among 1899 users. The number of communities inputed for Enron email

and Facebook-like datasets are set to 8 and 18, respectively.

100

We are interested in understanding their overlapping structures and what the

overlapping nodes really mean to them, particularly in the top 5 biggest communities. As

revealed in Figure 4-7, the numbers of members in top 5 communities of Facebook-like

network are, not surprisingly, much bigger are those of the Enron email network.

However, the internal density, i.e., the inner structures of those top 5 communities in

Enron emails are much stronger than those of Facebook networks. Indeed, the density

values of Enron email communities are more than twice of Facebook networks. This can

be explained as email communication in a work place among managers occurs much

more frequently than messages on a social environment like the Facebook network.

We next investigate on the overlapping substructures of these real networks, i.e., we

want to know how much they are overlapped and what the overlapped nodes mean to

the communities. As described in Figure 4-7, all 5 top communities of Facebook network

are highly overlapped whereas just 3 top communities of Enron email network appear

to have this properties. Moreover, overlapped nodes on Facebook network tend to be

active users who eagerly participate in multiple communities at the same time, i.e., they

send messages to multiple friends in different groups. Overlapped nodes on Enron email

network, though fewer, suggest that they potentially play vital roles in the company since

most of them communicate frequently many other members in all of the communities.

101

CHAPTER 5
SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS

In this chapter, we demonstrate the applicability of our proposed detection

algorithms QCA and AFOCS as the community identification cores in forwarding

and routing strategies in mobile dynamic networks. In the following paragraphs, we first

present the application of QCA and then describe how AFOCS can help to improve the

performance of this practical applications.

5.1 A Message Forwarding and Routing Strategy Employing QCA

In a broad view, a MANET is a dynamic wireless network with or without the

underlying infrastructure, in which each node can move freely in any direction and

organize itself in an arbitrary manner. Due to nodes mobility and unstable links nature of

a MANET, designing an efficient routing scheme has become one of the most important

and challenging problems on MANETs. Recent researches have shown that MANETs

exhibit the properties of social networks [46][19][10] and social-aware algorithms

for network routing are of great potential. This is due to the fact that people have a

natural tendency to form groups or communities in communication networks, where

individuals inside each community communicate with each other more frequent than

with people outside. This social property is nicely reflected to the underlying MANETs

by the existence of groups of nodes where each group is densely connected inside than

outside. This resembles the idea of community structure in Mobile Ad hoc Networks.

Multiple routing strategies [19]-[45] based on the discovery of network community

structures have provided significant enhancement over traditional methods. However,

the community detection methods utilized in those strategies are not applicable for

dynamic MANETs since they have to recompute the network structure whenever

changes to the network topology are introduced, which results in significant computational

costs and processing time. Therefore, employing an adaptive community structure

102

detection algorithm as a core will provide a speedup as well as robust to routing

strategies in MANETs.

We evaluate five routing strategies (1) WAIT: the source node waits until it meets

the destination node (2) MCP: A node keeps forwarding the messages until they reach

the maximum number of hops (3) LABEL: A node forwards or sends the messages to all

members in the destination community [46] (4) QCA: A Label version utilizing QCA as

the dynamic community detection method and lastly, (5) MIEN: A social-aware routing

strategy on MANETs [26].

Even though WAIT and MCP algorithms are very simple and straightforward to

understand, they provide us helpful information about the lower and upper bounds on

the message delivery ratio, time redundancy as well as message redundancy. The

LABEL forwarding strategy works as follow: it first finds the community structure of the

underlying MANET, assigns each community with the same label and then exclusively

forwards messages to destinations, or to next-hop nodes having the same labels as the

destinations. MIEN forwarding method utilizes MIEN algorithm as a subroutine. QCA

routing strategy, instead of using a static community detection method, employs QCA

algorithm for adaptively updating the network community structure and then uses the

newly updated structure to inform the routing strategy for forwarding messages.

5.1.1 Setup

We choose Reality Mining data set [29] provided by the MIT Media Lab to test our

proposed algorithm. The Reality Mining data set contains communication, proximity,

location, and activity information from 100 students at MIT over the course of the

2004-2005 academic year. In particular, the data set includes call logs, Bluetooth

devices in proximity, cell tower IDs, application usage, and phone status (such as

charging and idle) of the participated students of over 350,000 hours (4̃0 years). In this

paper, we take into account the Bluetooth information to form the underlying MANET

and evaluate the performance of the above five routing strategies.

103

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

A Delivery Ratio

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45

Time-to-live

LABEL
MIEN
QCA

B Average Duplicate Message

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

C Average Delivery Time

Figure 5-1. Experimental results on the Reality Mining data set

104

5.1.2 Results

For each routing method, we evaluate the followings (1) Delivery ratio: The portion

of successfully delivered over the total number of messages (2) Average delivery

time: Average time for a message to be delivered. (3) Average number of duplicated

messages for each sent message. In particular, a total of 1000 messages are created

and uniformly distributed during the experiment duration and each message can not

exist longer than a threshold time-to-live. The experimental results are shown in Figure

5− 1A, 5− 1B and 5− 1C .

Figure 5− 1A describes the delivery ratio as a function of time-to-live. As revealed

by this figure, QCA achieves much better delivery ratio than MIEN as well as LABEL and

far better than WAIT. This means that QCA routing strategy successfully delivers many

more messages from the source nodes to the destinations than the others. Moreover, as

time-to-live increases, the delivery ratio of QCA tends to approximate the ratio of MCP,

the strategy with highest delivery ratio.

Comparison on delivery time shows that QCA requires less time and gets

messages delivered successfully faster than LABEL, as depicted in Figure 5− 1C .

It even requires less delivery time in comparison with the social-aware method MIEN.

This can be explained as the static community structures in LABEL can possibly get

message forwarded to a wrong community when the destinations eventually change

their communities during the experiment. Both QCA and MIEN, on the other hand,

captures and updates the community structures on-the-fly as changes occur, thus

achieves better results.

The numbers of duplicate messages presented in Figure 5− 1B indicate that both

QCA and MIEN achieves the best results. The numbers of duplicated messages of MCP

method are substantially higher than those of the others and are not plotted. In fact, the

results of QCA and MIEN are relatively close and tend to approximate each other as

time-to-live increases.

105

In conclusion, QCA is the best social-aware routing algorithm among five routing

strategies since its delivery ratio, delivery time, and redundancy outperform those of

the other methods and are only below MCP while the number of duplicate messages is

much lower. QCA also shows a significant improvement over the naive LABEL method

which uses a static community detection method and thus, confirms the applicability of

our adaptive algorithm to routing strategies in MANETs.

5.2 A Message Forwarding and Routing Strategy Employing AFOCS

We present a practical application where the detection of overlapping network

communities plays a vital role in forwarding strategies in communication networks. With

the helpful knowledge of the network community structure discovered by AFOCS, we

propose a new community-based forwarding algorithm that significantly reduces the

number of duplicate messages while maintaining competitive delivery times and ratios,

which are essential factors of a forwarding strategy.

5.2.1 Message forwarding strategy

Let us first discuss how our new forwarding algorithm works in practice and then

how AFOCS helps it to overcome the above limitations. We use AFOCS to detect

overlapping communities and keep it up-to-date as the network changes. Each node

in a community is assigned the same label and each overlapped node u has a set of

corresponding labels Com(u). During the network operation, if a devices u carrying the

message meets another device v who indeed shares more common community labels

with the destination than u, i.e., |Com(v) ∩ Com(dest)| > |Com(u) ∩ Com(dest)|, then

u will forward the message to v . The same actions then apply to v as well as to devices

that v meets.

The intuition behinds this strategy is that if v shares more communities with the

destination nodes, it is likely that v will have more chances to deliver the message

to the destination. By doing in this way, we not only have higher chances to correctly

forward the messages but also generate much less duplicate messages. Due to its

106

adaptive nature and the ability of identifying overlapping communities, AFOCS helps

our algorithm to overcome the above shortcomings naturally. This explains why our

forwarding algorithm can significantly reduce the number of duplicate messages while

maintaining very competitive delivery times and ratios.

5.2.2 Setup

We compare six forwarding strategies (1) MIEN: A recently proposed social-aware

routing strategy on MANETs [26] (2) LABEL: A node will forward the messages to

another node if it is in the same community as the destination [46] (3) WAIT: The source

node waits and keeps forwarding the message until it meets the destination (4) MCP: A

node keeps forwarding the messages until they reach the maximum number of hops (5)

QCA: A LABEL version utilizing QCA [81] as the adaptive disjoint community detection

method and lastly (6) AFOCS: Our newly proposed forwarding algorithm equipped with

AFOCS as an community detection and update core.

Results of WAIT and MCP algorithms provide us the lower and upper bounds of

important factors: message delivery ratio, time redundancy and message redundancy.

Our experiments are performed on the Reality Mining dataset provided by the MIT

Media Lab [29]. This dataset contains communication, proximity, location, and activity

information from 100 students at MIT over the course of the 2004-2005 academic

year. In particular, we take into account the Bluetooth information to construct the

underlying communication network and evaluate the performance of the above six

routing strategies.

In each experiment, 500 message sending requests are randomly generated and

distributed in different time points. To control the forwarding process, we use hop-limit,

time-to-live, and max-copies parameters. A message cannot be forwarded more than

hop-limit hops in the network or exist in the process longer than time-to-live, otherwise

it will be automatically discarded. Moreover, the maximum number of same messages

107

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

A Average Duplicate Message

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

B Delivery Ratio

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

C Average Delivery Time

Figure 5-2. Experimental results on the Reality Mining data set

108

a device can forward to the others is restricted by max-copies. Experiments results are

repeated and results are averaged for consistency.

5.2.3 Results

Our results are presented in Figures 5-2A, 5-2B, 5-2C. The first observation

reveals that our proposed forwarding algorithm achieves the lowest number of duplicate

messages as depicted in Figure 5-2A, and even far better than the second best method

QCA. On average, only 46.5 duplicate messages are generated by AFOCS during

evaluation process in contrast with 212.2 of QCA, 274.2 of MIEN, 496.4 of LABEL

and the huge 1071.0 overhead messages of MCP. Thus, on the number of duplicate

messages, AFOCS strikingly achieves improvement factors of 4.5x, 5x, 11x and 23x

over these mentioned strategies, respectively. These extremely low overhead strongly

imply the efficiency of AFOCS in communication networks.

Figures 5-2B and 5-2C present our results on the other two important factors,

the message delivery ratios and delivery times. These figures supportively indicate

that AFOCS achieves competitive results on both of these vital factors. In general,

AFOCS is the second best strategy with almost no noticeable different between itself

and the leader method LABEL. On average, AFOCS gets 33% of the total messages

delivered in 3569.2s and only a little bit lags over MCP (34% in 3465.3s) and LABEL

(slightly over 33% in 3462.7s), and is far better than MIEN (32% in 3537.6s) and QCA

(32% in 3572.2s). This can be explained by the advantages of knowing the overlapping

community structure: the disjoint network communities in QCA and MIEN can possibly

have messages forwarded to the wrong communities when the destination changes

its membership. With the ability of quickly updating the network structure, AFOCS can

efficiently cope with this change and thus, can still provide the most updated forwarding

information.

In summary, AFOCS helps our forwarding strategy to reduce up to 11x the number

of duplicate messages while keeping good average delivery ratio and time. These

109

experimental results are highly competitive and supportively confirm the effectiveness of

AFOCS and our new routing algorithm on communication networks.

110

CHAPTER 6
SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS

In this section, we present another practical application of our proposed algorithms

in worm containment problem in OSNs. We first suggest a solution based on QCA,

and then describe how AFOCS can help to improve the performance of this solution

for this practical problem in complex networks. Since their introduction, popular social

network sites such as Facebook, Twitter, Bebo, and MySpace have attracted millions of

users worldwide, many of whom have integrated those sites into their everyday lives.

On the bright side, OSNs are ideal places for people to keep in touch with friends and

colleagues, to share their common interests, or just simply to socialize online. However,

on the other side, social networks are also fertile grounds for the rapid propagation of

malicious softwares (such as viruses or worms) and false information.

Facebook, one of the most famous social sites, experienced a wide propagation of

a trojan worm named “Koobface” in late 2008. Koobface made its way not only through

Facebook but also Bebo, MySpace and Friendster social networks [31][53]. Once

a user’s machine is infected, this worm scans through the current user’s profile and

sends out fake messages or wall posts to everyone in the user’s friend list with titles

or comments to appeal to people’s curiosity. If one of the user’s friends, attracted by

the comments without a shadow of doubt, clicks on the link and installs the fake “flash

player”, his computer will be infected and Koobface’s life will then cycle on this newly

infected machine.

Worm containment problem becomes more and more pressing in OSNs as this kind

of networks evolves and changes rapidly over time. The dynamics of social networks

thus gives worms more chances to spread out faster and wider as they can flexibly

switch between existing and new users in order to propagate. Therefore, containing

worm propagation on social networks is extremely challenging in the sense that a good

solution at the previous time step might not be sufficient or effective at the next time

111

A
B

CD

Figure 6-1. A general worm containment strategy.

step. Although one can recompute a new solution at each time the network changes,

doing so would result in heavy computational costs and be time consuming as well as

allowing worms spreading out wider during the recomputing process. A better solution

should quickly and adaptively update the current containing strategy based on changes

in network topology, and thus can avoid the hassle of recomputation.

There are many proposed methods for worm containment on computer networks by

either using a multi-resolution approach [97], or using a simplification of the Threshold

Random Walk scan detector [106], or using fast and efficient worm signature generation

[51]. There are also several methods proposed for cellular and mobile networks [104][7].

However, these approaches fail to take into account the community structure as well as

the dynamics of social networks, and thus might not be appropriate for our problem. A

recent work [110] proposed a social-based patching scheme for worm containment on

cellular networks. However, this method encounters the following limitations on a real

social network (1) its clustered partitions do not necessarily reflect the natural network

communities, (2) it requires the number of clusters k (which is generally unknown for

social networks) must be specified beforehand, and (3) it exposes weaknesses when

dealing with the network’s dynamics.

112

6.1 An Application of QCA in Containing Worms in OSNs

6.1.1 Setup

To overcome these limitations, our approach first utilizes QCA to identify the

network community structure, and adaptively keeps this structure updated as the

network evolves. Once network communities are detected, our patch distribution

procedure will select the most influential users from different communities in order

to send patches. These users, as soon as they receive patches, will apply them to

first disinfect the worm and then redistribute them to all friends in their communities.

These actions will contain worm propagation to only some communities and prevent it

from spreading out to a larger population. To this end, a quick and precise community

detection method will definitely help the network administrator to select a more sufficient

set of critical users to send patches, thus lowering down the number of sent patches as

well as overhead information over the social network.

Algorithm 15 Patch Distribution
Input: G = (V ,E) and its community structure C = {C1,C2, ..,Cp}
Output: The set of influential users P.

1: P = ∅;
2: for Ci ∈ C do
3: while ∃u unvisited in Ci satisfying maxu∈Ci

{eCi

out(u)} > 0 do
4: Let v ← argmaxu∈Ci

{eCi

out(u)};
5: P = P ∪ v ;
6: Mark v as visited in Ci ;
7: end while
8: end for
9: Send patches to users in P;

We next describe our patch distribution. This procedure takes into account the

identified network communities and selects a set of influential users from each

community in order to distribute patches. Influential users of a community are ones

having the most relationships or connections to other communities. In an adversary

point of view, these influential users are potentially vulnerable since they not only

interact actively within their communities but also with people outside, and thus, they

113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

C α = 20%

Figure 6-2. Infection rates on static network with k = 150 clusters

can easily fool (or be fooled by) people both inside and outside of their communities.

On the other point of view, these users are also the best candidates for the network

defender to distribute patches since they can easily announce and forward patches to

other members and non-members.

In Alg. 15, we present a quick algorithm for selecting the set of most influential

users in each community. This algorithm starts by picking the user whose number of

social connections to outside communities is the highest, and temporarily disregards

this user from the considering community. This process repeats until no connections

crossing among communities exists. This set of influential users is the candidate for the

network defender for distributing patches.

114

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

C α = 10%

Figure 6-3. Infection rates on dynamic network with k = 200 clusters

6.1.2 Results

We present the results of our QCA method on the Facebook network dataset

[100] and compare the results with the social based method (Zhu’s method [110]) via a

weighted version of our algorithms.

The worm propagation model in our experiments mimics the behavior of the

famous “Koobface” worm. The probabilities of activating the worm is proportional

to communication frequency between the victim and his friends. The time taken

for worms to spread out from one user to another is inversely proportional to the

communication frequency between this user and his particular friend. Finally, when a

worm has successfully infected a user’s computer, it will start propagating as soon as

115

this computer connects to a specific social network (Facebook in this case). When the

fraction of infected users reaches a threshold α, the detection system raises an alarm

and patches will automatically be sent to most influential users selected by Alg. 15.

Once a user receives the patch, he will first apply it to disinfect the worm and then will

have an option to forward it to all friends in his community. Each experiment is seeded

with 0.02% of users to be initially infected by worms.

We compare infection rates of the social-based method of Zhu’s and ours. The

infection rate is computed as the fraction of the remaining infected users over all infected

ones. The number of clusters k in Zhu’s method is set to be 150 in static and 200 in

dynamic networks, and for each value of k , the alarming threshold α is set to be 2%,

10%, and 20%, respectively. Each experiment is repeated 1000 times for consistency.

Figure 6-2, 6-3 show the results of our experiments for three different values of

k and α. We first observe that the longer we wait (the higher the alarm threshold is),

the higher number of users we need to send patches to in order to achieve the desired

infection rate. For example, with k = 150 clusters and an expected infection rate of 0.3,

we need to send patches to less than 10% number of users when α = 2%, to more than

15% number of users when α = 10% and to nearly 90% of total influential users when

α = 20%.

A second observation reveals that our approach achieves better infection rates than

the social-based method of Zhu’s in a static version of the social network as depicted

in Figure 6-2. In particular, the infection rates obtained in our method are from 5% to

10% better than those of Zhu’s. When the network evolves as new users join in and new

social relationships are introduced, we resize the number of cluster k and recompute the

infection rates of the social based method with the number of cluster k = 200, and the

alarm threshold α = 2% and 10% respectively. As depicted in Figures 6-3, our method,

with the power of quickly and adaptively updating the network community structure,

achieves better infection rates than Zhu’s method while the computational costs and

116

running time is significantly reduced. As discussed, detecting and updating the network

community is the crucial part of a social based patching scheme: a good and up-to-date

network community structure will provide the network defender a tighter set of vulnerable

users, and thus, will help to achieve lower infection rates. Our adaptive algorithm,

instead of recomputing the network structure every time changes are introduced, quickly

and adaptively updates the network communities on-the-fly. Thanks to this frequently

updated community structure, our patch distribution procedure is able to select a better

set of influential users, and thus, helps in reducing the number of infected users.

We further look more into the behavior of Zhu’s method when the number of

clusters k varies. We compute and compare the infection rates on Facebook dataset

for various k ranging from 1K to 2.5K with our approach. We first hope that the more

predefined clusters, the better infection rates clustered partitioning method will achieve.

However, the experimental results reveal the opposite. In particular, with a fixed alarming

threshold α = 10% and 60% patched nodes, the infection rates achived by Zhu’s method

do not decrease but ranging near 28% while ours are far better (20%) with much less

computational time.

Finally, a comparison on running time on the two approaches shows that time taken

for Zhu’s method is much more than our community updating procedure, and hence,

may prevent this method to complete in a timely manner. In particular, our approach

takes only 3 seconds for obtaining the basic community structure and at most 30

seconds to complete all the tasks whereas [110] requires more than 5 minutes to divide

the communication network into modules and selecting the vertex separators. In that

delay, worm propagation may spread out to a larger population, and thus, the solution

may not be effective. These experimental results confirm the robustness and efficiency

of our approach on social networks.

117

6.2 Containing Worms with Overlapping Communities Detected by AFOCS

We show another application of AFOCS in worm containment problem on OSNs.

OSNs are good places for people to socialize online or to stay in touch with friends and

colleagues. However, when some of the users are infected with malicious software, such

as viruses or worms, OSNs are also fertile grounds for their rapid propagations. Since

mobile devices are able to access online social applications nowadays, worms and

viruses now can target computers [81] and mobile devices [110].

Recently, community structure-based methods have been proven to be effective

solutions to prevent worms from spreading out wider on not only social networks [81][82]

but also cellular networks [110]. Due to the high and low frequencies of interactions

inside and between communities, worms spread out quicker within a community than

between communities. Therefore, an appropriate reaction should first contain worms into

only infected communities, and then prevent them from getting outside. This strategy

can be accomplished by patching the most influential members who are well-connected

not only to members of their community but also to people in other communities.

6.2.1 Setup

In our experiments, we use Facebook network dataset collected in [100]. This data

set contains friendship information and wall posts among New Orleans regional network,

spanning from Sep 2006 to Jan 2009. The data set contains more than 63.7K nodes

(users) connected by more than 1.5 million friendship links. We keep other parameters

as well as the “Koobface” worm propagation model the same as [82] for comparison

convenience. With the advantages of knowledge overlapping communities, we are able

to develop a better and more efficient patching scheme. In particular, we enhance the

patching scheme presented in in [82] to take the advantage of the overlap regions:

nodes in the boundary of overlapped regions are selected for patching (Figure 6-4A).

Alg 16 details the adjusted scheme.

118

A Influential users selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

AFOCS QCA Blondel Zhu’s

N
u
m

b
e
r

o
f
p
a
tc

h
e
d
 n

o
d
e
s

Method

1752

3552 3569
3347

B Number of patched nodes

Figure 6-4. OverCom patching scheme.

Algorithm 16 OverCom Patching Scheme
Input: G = (V ,E) and C = {C1,C2, ...,Ck} detected by AFOCS
Output: A set of patched nodes IS .

1: IS ← ∅;
2: for (Ci ,Cj ∈ C) do
3: if (Ci ∩ Cj ̸= ∅) then
4: %Choose the neighbors of overlapped nodes as influential ones%
5: IS ← IS ∪ N(u) ∀u ∈ Ci ∩ Cj ;
6: end if
7: end for
8: %Patch distribution procedure%
9: for (u ∈ IS) do

10: Send patches to u;
11: Let u redistribute patches to w ∈ IS\N(u);
12: end for

6.2.2 Results

We compare the OverCom patching scheme and overlapping communities found

by AFOCS to those using disjoint communities proposed by Blondel et al. [6], QCA by

Nguyen et al. [81] and Clustering based method suggested by Zhu et al. [110]. The

number of patched nodes is shown in Figure 6-4B. Both the number of patched nodes

and the infection rates decline remarkably. In particular, the number of nodes to send

patch in AFOCS is substantially smaller by half of those required by Blondel, QCA as

well as Zhu’s methods: only 1725 nodes over 63K nodes in the networks are needed

119

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n

 r
a

te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

A α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n

 r
a

te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

B α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n
 r

a
te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

C α = 20%

Figure 6-5. Infection rates between four methods.

120

to be patched by OverCom patching scheme, while the other schemes require nearly

twice (≥3,300 nodes). The reason behind this improvement is due to the nature of our

AFOCS framework, the neighbors of the overlapped nodes should not be to far away

from the center of each community, thus they can easily redistribute the patches once

received.

We next present the achieved infection rates with alarming thresholds (the fraction

of infected nodes over all nodes) α = 2%, 10% and 20%, respectively. This threshold

alarms the distribution process as soon as the infected rate goes beyond α. The results

are reported in Figures 6-5A, 6-5B, 6-5C, respectively. In general, the higher α (i.e., the

longer we wait), the more nodes we have to send patches and the higher infection rate.

OverCom with AFOCS achieves the lowest infection rates in almost all the experiments

and just a little bit lag behind when α = 10%. In particular, when α = 2%, AFOCS helps

OverCom to remarkably reduce from 1.6x up to 4.3x the infection rates of QCA, from

2.6x up to 4x the infection rates of Blondel and 3.2x to 7x those of Zhu’s method. When

α = 10%, AFOCS +OverCom achieves average improved rates of 9% over QCA, 5%

over Blondel and 43% over Zhu’s methods. As α = 20%, the average improvements are

12%, 23% and 53%, respectively. Due to the nature of the event handling processes,

the neighbors of overlapped nodes are not located far away from the rest of their

communities. As a result, they can help to distribute patches to more users in the

communities, hence help to lower the infection rates of AFOCS. These improvement

factors, again, confirm the effectiveness of our proposed method.

121

CHAPTER 7
STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS

A large body of work has been devoted to find general communities (i.e., without the

concept of stability) on both directed and undirected networks in the literature [32]. On

the contrary, only a very few approaches are suggested to identify stable communities

[59][68], especially on directed and weighted networks. The main source of difficulty

is due to the inconsistency of community members in a general structure: while they

might appear to be in a community at one time, they may not commit to that particular

community in a long run. One possible approach, therefore, is to find a consensus of

a specific algorithm after multiple runs and use this core as stable communities [59].

However, doing in this way would result in expensive computational cost and time

consuming as well as lack of convergence guarantees. In [68], the authors estimate the

mutual links between pairs of users and suggest a detection method that optimizes the

total mutual connection on the whole network. While the idea of mutual connection is

quite interesting, we find that it might not be sufficient because some estimated mutual

links are of low magnitudes, and thus, may not reflect the correct concept of stability at

the community level.

In general, a stable community is often characterized either by its tight and strong

internal relationships represented by the mutual connections among its users [68],

or by its internal links who possess a high tendency to remain within the community

over a long period of time [23]. In other words, stable communities in the network

are commonly characterized by stable connections among their members. Motivated

by these observations, we suggest SCD (short for Stable Community Detection), a

framework to effectively identify stable communities in directed OSNs that facilitates both

of the above intuitions. In a big picture, SCD works by first enriching the input network

with the stability estimation of all links in the network, and then discovering communities

via stable connections using the lumped Markov chain model. Our approach is

122

mathematically supported by a key connection between the persistence probability of a

community at the stationary distribution and its local topology. One notable advantage of

SCD is that it requires only a single iteration, which shall significantly reduce the running

time. Furthermore, since our method intrinsically accounts for stability, the discovered

communities should be stable as opposed to doing a statistical analysis.

In summary, we suggest an estimation which provides helpful insights into the

stability of links in the input network. Based on that, we propose SCD - a framework

to identify community structure in directional OSNs with the advantage of community

stability. We next explore an essential connection between the persistence probability

of a community at the stationary distribution and its local topology, which is the

fundamental mathematical theory to support the SCD framework. To certify the

efficiency of our approach, we extensively test SCD on both synthesized datasets

with embedded communities and real-world social traces, including NetHEPT and

NetHEPT WC collaboration networks as well as Facebook social networks, in reference

to the consensus of other state-of-the-art detection methods. Highly competitive

empirical results confirm the quality and efficiency of SCD on identifying stable

communities in OSNs.

7.1 Basic Notations

We introduce the basic notations representing the underlying social network that we

will use throughout this paper.

(Graph notation) Let G = (V ,E ,w) be a directed and weighted graph representing

a social network with V is the set of n network users (or nodes), E is the set of m

directed relationships (or edges), and w (or precisely wuv) is the weight function on

each edge (u, v) ∈ E representing the communication frequency between user u and

v in the social network. Without loss of generality, we assume that all edge weights

are normalized, i.e.,
∑

(u,v)∈E wuv = 1 and wuv ≥ 0. For each edge (u, v) ∈ E which

(v , u) /∈ E , we say that the backwards edge (v , u) is missing, we will use the notation

123

(v ; u) and wv ;u to denote the mutual link of edge (u, v) if (v , u) should indeed exist in E

and its weight, respectively. Furthermore, we will use the notation st(u, v , t) to denote

the stability estimate of edge (u, v) at time step (or hop) t. These notations will be

described in detail in next section.

(Community notation) Denote by C = {C1,C2, ...,Cq} the network community

structure, i.e., a collection of q subsets of V satisfying ∪qi=1Ci = V and Ci ∩ Cj = ∅ ∀i , j .

We say that each Ci ∈ C and its induced subgraph form a community of G . For a node

u ∈ V , let N+
u ,N

−
u and Nu denote the set of outgoing, the set of incoming, and the set

of all neighbor nodes adjacent to u, respectively. Furthermore, let k+
u (or w+

u), k
−
u (or w−

u)

and ku(or wu) be the corresponding cardinalities (or total weights) of these sets. For any

C ⊆ V , let C in and C out denote the set of links having both endpoints in C and the set

of links heading out from C , respectively. In addition, let mC = |C in| (rsp. wC = w(C in))

and k+
C =

∑
u∈C k

+
u (rsp. w+

C =
∑

u∈C w
+
u). Finally, the terms node-vertex as well as

edge-link-connection are used interchangeably.

7.2 Link Stability Estimation

We describe our first step towards the identification of stable communities in the

network: the link stability estimation process. Intuitively, a stable community is often

characterized either by its tight and strong internal relationships represented by the

mutual connections among its users [68], or by its internal links who possess a high

tendency to remain within the community over a long period of time [23]. In other words,

stable communities in the network are commonly characterized by stable connections

among their members. Motivated by these observations, in this section, we suggest a

procedure for estimating the stability of each link in the network that facilitates both of

the above intuitions. Our estimation procedure consists of two stages: In the early stage,

the reciprocity of each link in the network is first predicted, and based on that, its stability

is consequently evaluated in the later stage.

124

7.2.1 Link reciprocity prediction

When dealing with large scale OSNs, it is possible that some backwards edges

between individuals are missing. This lack of information may due to the imperfect

data collection process, or because these backwards edges are not yet reflected

in the underlying network but should due to the strong relationships between local

network users. For instance, Leskovec et al. [65] observe that friends of friends in social

networks tend to be friend of each other in the near future, i.e., there should be dual

connections between friends of friends with high chance even if they are not yet friend

of each other. Therefore, predicting the existence of these backwards edges will allow

a more complete and comprehensive detection of stable communities by increasing the

internal density of strongly connected components, which are potential candidates for

network communities.

Link reciprocity prediction problem is a well-studied field and many methods

are proposed in the literature [69][3][30]. In this paper, we utilize a method called

“friends-measure” suggested in [30]. The intuition behind this measure is that when

looking at two users in the social network, one can assume that the more connections

their neighbors have with each other, the higher the chance the two users are actually

connected. Originally, this friends-measure between two users u and v is formulated as:

friends-measure(u, v) =
∑
x∈Nu

∑
y∈Nv

δ(x , y)

where δ(x , y) = 1 if either x = y or (x , y) ∈ E or (y , x) ∈ E . This measure has

been extensively verified among other topological features and has been shown to be

a promising one in comparison with other metrics [30]. However, in the case of directed

networks, there are possibilities that different link topologies can share a common

friends-measure value. Therefore, we need to modify the above formula so that it

reflects the true relationship between the network users, and furthermore copes with

edge weights in the network.

125

In order to better handle directed and weighted graphs, we will attempt to predict

the existence of backwards edges of unidirectional links. For example, if (u, v) ∈ E and

(v , u) /∈ E , we will try to find the possibility whether we should enrich the network by

inserting (v , u) into E . To this end, we first relax the direction of the edge between u and

v , and next compute the likelihood that a backwards edge should exist between u and v

by using the modified formula

�(u, v) =

∑
x∈Nv

∑
y∈Nu

τ(x , y)

WvWu

(7–1)

Where τ(x , y) = wvxwxywyu is the total possibility of the backwards path starting

from v , passing through neighbor nodes x and y , and ending at u. When the network

is unweighted Wu = du,Wv = dv and thus, �(u, v) counts the (normalized) number of

paths of lengths two and three joining two users u and v , which intuitively agrees with

the aforementioned friends-measure formula. By Proposition 7.1, we show that �(u, v)

is indeed the generalization of weighted friend-measure(u, v) and depends only on the

nodes’ topology. Hence, �(u, v) can be regarded as the estimated probability that the

backwards connection < v , u > indeed exists, i.e., we set w<vu> = �(u, v).

Proposition 7.1. For any (u, v) ∈ E which (v , u) /∈ E , 0 ≤ �(u, v) ≤ 1.

Proof. We first prove this for unweighted graphs. The proof for weighted graphs

can be extended straightforwardly. It is obvious that 0 ≤ �(u, v). Now we show

�(u, v) ≤ 1. For any x , y such that δ(x , y) = 1, if x = y , they can make just one

connection counted towards the summation. Otherwise, they can make at most du

(or dv) dual-connections at each vertex. Taking these facts into account, we have

�(u, v) =
∑

x∈Nv

∑
y∈Nu

δ(x , y) ≤ dvdu. Thus, the inequalities follows. The left equality

holds when there are no connections from u to v and vice versa. The right equality

holds when every path of length 2 from u to v (or from v to u) are contained in the

corresponding path of length 3.

126

Proposition 7.2. Let n0 be the number of unidirectional links in the input network. The

time complexity for estimating the mutual connections for these links is O(n0M).

Proof. The total time required for estimating the possibility for a backward connection at

an edge (u, v) is du + dv +min
∑

x∈N+
v

∑
y∈N−

y
{d+

x , d
−
y }. Thus, for all n0 links, the total time

complexity is upper bounded by n0(2M) + n0M = O(n0M).

7.2.2 Link stability estimation

After the reciprocity of each link in the network has been estimated, the input

network is now enriched with more information of the backwards edges. While the

presence of these dual edges is helpful in characterizing the mutual relationships

between pairs of network users, it might not be sufficient to evaluate the stability of

all network connections as some of the backwards edges may be of low magnitudes,

and thus, may not be able to hint the stability of the connection. Therefore, we need to

further estimate the stability of a network link given its predicted reciprocity. In order to

do so, we define the stability of an edge (u, v) ∈ E at t time steps (or t hops) as follow

st(u, v , t) =
∑
|P|=t

w(P)

where P is a path going from v to u (v and u are excluded) of length |P| = t, and

w(P) =
∏

(a,b)∈P wab is the total weight of path P. Finally, we define the stability st(u, v)

of a link (u, v) ∈ E as the total stability of up to T0 time steps, where T0 is a predefined

parameter (or the upper bound on the number of hops)

st(u, v) =

T0∑
t=1

st(u, v , t). (7–2)

The intuition behind our stability function st(u, v) is as follow: since stable communities

are commonly recognized by a high density of stable edges, it is reasonable to expect

that such edges form a cycles. In the senses of directed and weighted networks, the

stronger the strength of cycles an edge (u, v) is on, the more stable it is believed to be.

127

u v

0.45

u v

x

0.5 0.2

u v

x 0.5 0.2

0.1

y

a) b) c)

Figure 7-1. Illustrations of stability function.

On the contrary, edges that connecting or joining between communities shall hardly

be part of many cycles, and eventually result in low stability. Figure 7-1 illustrates the

stability estimates for link (u, v) at 0, 1 and 2 hops: a) st(u, v , 0) = 0.45 = w<vu>, b)

st(u, v , 1) = 0.5× 0.2 = 0.1, c) st(u, v , 2) = 0.5× 0.1× 0.2 = 0.05.

As a local measure, our suggested stability function has the following advantages

(1) it puts more focus on the existence of the mutual link of any link (u, v) by reserving

the original strength of the backwards edge < v , u >. This intuitively agrees with the

findings that stable clusters are usually made of bidirectional links in [68]. Moreover,

our formula further takes into account the strength of cycles containing the current

link; (2) the more time (or, number of hops) we allow, the more stability a link would

be. Nevertheless, links that really belong to a stable community are more likely to

have strong stability whereas those connecting communities are of low stability. These

advantages support the intuitions of stable communities that we discussed above. The

performance of our stability estimation is evaluated in more detail in section 7.4.

In summary, our link stability estimation first predicts the potential of the dual link

of any link (u, v) ∈ E such that (v , u) /∈ E by using the modified measure in equation

(7–1). Next, it evaluates the stability of the every link in the given network enriched from

the first stage by using equation (7–2), and utilizes these stability values as new weights

for links in the network. This resulting network will be consequently passed as the input

network to our main process: the identification of stable communities.

128

7.3 Stable Community Detection

In this section, we present our main contribution: the stable community identification

process. Given the input network enriched with link stability information, we discover

the stable communities by exploring an important connection between the persistence

probability of each community and its local network topology. In the following paragraphs,

we first review the concept of Lumped Markov chain [50][89], and then establish our key

connection between this Markov chain and the local network topology. Finally, we

describe in detail our last but most important process: stable community detection.

7.3.1 Lumped Markov chain

A Markov chain [96] is a mathematical system representing transitions from one

system’s state to another, between a finite number of predefined states. In terms of

social networks, a state can be either a user (a node in the graph) or a group of tightly

connected users (a community) in the networks, whereas transitions can be regarded

as the user-to-user or group-to-group communication tendencies. An n-state Markov

chain corresponding to an n-node network is commonly represented by the transition

πt+1 = πtP, where πt = (π1,t ,π2,t , ...,πn,t) with πu,t is the probability of being at node u at

time t, and P = (puv) is the transition matrix. In particular, this n-state Markov chain can

be associated to input network by letting the probability of transiting from a node u to a

neighbor node v as

puv =
wuv∑
j wuj

=
wuv

w+
u

.

Basically, puv is the probability of a random walker jumps from node u to node v given

the network topology. A Markov chain is said to be at its stationary state distribution

π if π satisfies the equation π = πP. As shown in [43], when the network is originally

connected P would be irreducible, and thus, the equation π = πP has a unique solution

which is strictly positive (πu > 0 ∀u ∈ V) which corresponds to the stationary Markov

chain state distribution. When the network is undirected, π can be exactly computed as

π = 1
2W0

(w1,w2, ...,wn) with W0 is the total edge weights. However, we do not have an

129

exact form for the stationary distribution π in general for directed network, and thus, π

has to be computed numerically.

As our ultimate goal is to detect the stable network community structure, we sought

to find a good partitioning of V where each partition will remain wealthy over time. In the

light of Markovian chain method, this corresponds to finding a collection of communities

C = {C1,C2, ...,Cq} where a random walker would spend most of the time walking inside

a community and less time wandering among communities. By defining this partition C

of q communities, we introduce a so called q-state meta-network where each community

in the network becomes a meta-state. However, at this aggregate level, a in general

dynamics Markovian description of a random walker walking among communities is not

possible because the Markovian property may not be well-preserved [50]. Nevertheless,

this q-state community-to-community transition can still be defined using the lumped

Markov chain, which correctly describes the random walker at this scale given the

stochastic process is started at the stationary distribution π [43]. This lumped Markov

chain is defined via the q × q matrix as U in [89]

U = [diag(πH)]−1HTdiag(π)PH

where H is a n × q binary matrix representing the partitioning C.

One of the notable advantages of the lumped Markov chain �t+1 = �tU defined

on U is that it shares the same stationary distribution with the original Markov chain,

i.e., the new stationary distribution defined by � = πH satisfies the equation � = �U.

Moreover, the difference between �t+1 = �tU, starting at �0 = πU, and the original

πtH tends exponentially to zero if the two chains are regular. These advantages make

the community-based lumped Markov chain defined by �tU a very good approximation

of the original n-node network. We stress that the ability of the lumped Markov chain to

describe the random walk dynamics only at stationary is not a limitation for the detection

of stable communities. Indeed, this stationary requirement evaluates the random walk

130

dynamics of all nodes at their stable states, and hence perfectly supports the concept of

stable communities.

In terms of interpretation, each entry ucd of U denotes the chance that a random

walker, at time t, wanders from community c to another community d in time t + 1. As

a result, the diagonal elements uCC ’s (or uC ’s in short) of U indicate the persistence

probabilities that a random walker just walking within a particular community C . Of

course, large values of uC ’s are expected for meaningful communities. It is also shown in

[89] that in directed and weighted graphs, uC can be computed as

uC =

∑
i ,j∈C πipij∑
i∈C πi

(7–3)

Note that
∑

i ,j∈C πipij is the fraction of time a random walker spends on the links inside

a community C . Hence, uC is indeed the ratio between the amount of time a random

walker spends on links and that it spends on nodes in C . In undirected networks, one

can verify that

uC =

∑
i ,j∈C πiwij∑
i∈C wi

=
2wC

2wC + w(C out)
.

7.3.2 Connection to the network topology

At this stage, one might try to optimize uC for all communities C ∈ C in order to

maximize theie persistence probabilities. However, doing in this way requires solving

for the stationary distribution πi ’s (as in equation (7–3)) which may be extremely costly,

especially in large scale directed networks. So, how can we effectively optimize the

persistence probability uC for each community without solving for that costly exact

stationary distribution? As an answer for this challenging question, we present in

Proposition 7.3 a connection between the persistence probability of a community C

and its local topology. In particular, we show that the minimum value of uC can be

represented by quantities that only involve C ’s local topology. Therefore, optimizing uC

131

can be shifted as the optimization of these local components, which are inexpensive and

easy to derive.

Proposition 7.3. For any community C ∈ C, at the stationary distribution π, we have the

following inequality

uC =

∑
i ,j∈C πipij∑
i∈C πi

≥ wC

w+
C

.

Proof. It is easy to see that

uC =

∑
i ,j∈C πipij∑
i∈C πi

=

∑
i∈C πi

wi ,C

w+
i∑

i∈C πi
.

where wi ,C =
∑

j∈C wij . Next, we rewrite
∑

i∈C πi in the form
∑

i∈C πi = πTeC where

eC = (ei)N×1 and ei = 1 if i ∈ C and 0 otherwise. Since π is the stationary distribution of

the Markov chain, we have π = πP. Thus

πTeC = πTPeC =
∑
i∈C

πi
(∑
j :(i ,j)∈E

1

w+
i

)
Now we have,

∑
i∈C

πi × wC =
∑
i∈C

πi
(∑
j :(i ,j)∈E

1

w+
i

)
wC

≤
∑
i∈C

πi
wi ,C

w+
i

(∑
t∈C

w+
t

)
=
∑
i ,j∈C

πi
wi ,C

w+
i

× w+
C

Hence, the conclusion follows. The quality holds when all πi equals to each other and

wC = w+
C . This happens when C is a full dually connected clique and is disconnected

from the rest of the network.

7.3.3 Detecting communities

7.3.3.1 Formulation

Proposition 7.3 discussed in the above paragraph establishes the connection

between the persistence probability of a random walker staying within a community C

and the local network topology. As a result, if we can maximize the later quantity, we can

provide some insurance to the desired optimization with high confidence. Taking into

132

account this intuition, we propose Stable Community Detection (SCD) as an optimization

problem defined as follow: Given a directed, weighted network G = (V ,E ,w), find

a community structure C = {C1,C2, ...,Cq} such that the overall total persistence

probability is maximized:

maxR =
∑
C∈C

wC

w+
C

subject to

Ci ∩ Cj = ∅ ∀i , j ∈ {1, 2, ..., q}
q∪
i=1

Ci = V

Note that in our SCD formulation, the number of communities q will be determined by

optimizing the objective function R and is not an input parameter. Indeed, optimizing

R provides us q a very good estimate for the actual number of communities, as we will

show in section 7.4.

7.3.3.2 Resolution limit analysis

Perhaps one of the most important properties a metric suggested for identifying

community structure should satisfy is the ability of overcoming the resolution limit [35],

i.e., the metric should be able to detect network communities even at different scaling

levels. In this subsection, we analyze the resistance to resolution limit of our proposed

function R by looking particularly at the condition in which two communities should be

merged together. In what following, we simplify the situation by considering undirected

networks.

Let us consider two communities C1 and C2. Let m12 be the number of edges

connecting C1 and C2. In order to merge C1 and C2 into a bigger community, m12 should

satisfy:
mC1

d+
C1

+
mC2

d+
C2

≤ mC1
+mC2

+m12

d+
C1

+ d+
C2

133

The above condition is equivalent to:

mC1

d+
C2

d+
C1

+
mC2

d+
C1

d+
C2
≤ m12

which in turn implies 2
√
mC1

mc2 ≤ m12. Without loss of generality, we can assume that

mC1
≤ mC2

, thus 2mC1
≤ m12. This violates the condition of even a weak community.

Moreover, this inequality implies the sufficient condition to merge two adjacent

communities depends on the local structure of two communities only, regardless of

the rest of the network. This observation indicates that our proposed metric R is strongly

against the resolution limit.

7.3.3.3 Connection to stability estimation

We next verify the following properties of network communities identified by

optimizing our suggested metric R: (1) links within a communities are of high stability

and (2) links connecting communities are of low stability values. These two observations

are shown in Propositon 7.4.

Proposition 7.4. Let C = {C1,C2, ...,Ck} be a community structure detected by optimiz-

ing R, links within each Ci are of strong stability and those connecting communities are

of weak stability values.

Proof. For any node p ∈ V and subset A ⊆ V , let wp,A be the total weight of all links that

p has towards A and vice versa. By this definition, we obtain wp = wp,A + wp,V \A. For any

community C ∈ C, s ∈ C and p /∈ C , since p is not a member of C , we have

wC

w+
C

>
wC + wp,C

w+
C + wp

=
wC + wp,C

w+
C + wp,C + wp,V \C

,

because otherwise joining p to C will give a better value of R. This equality equals

wp,C

wp

<
wC

w+
C

,

which in turn implies that the stability contribution of links joining p to C are insignificant

in comparison to C as a whole.

134

Similarly, for any node s ∈ C , we have

wC

w+
C

>
wC − wp,C

w+
C − wp

=
wC − wp,C

w+
C − wp,C − wp,V \C

,

because otherwise excluding s from C will give a better R. This inequality equals to

ws,C

ws

>
wC

w+
C

,

which in turn implies that the stability contribution of internal links of C are significant in

comparison to C as a whole.

7.3.3.4 A greedy algorithm for SCD problem

Analyzing the theoretical hardness of the SCD problem is an aspect beyond the

scope of this paper. In fact, the NP-hardness of the SCD problem can be shown by a

similar reduction to MODULARITY as in [8] (see also [101] and [36] for a comprehensive

survey on similar graph clustering problems). Given its NP-hardness, a heuristic

approach that can provide a good solution in a timely manner is therefore more

desirable. In this section, we describe a greedy algorithm for the SCD problem

consisting of community growing, strengthening and refinement phases described

as follow.

Growing phase. This phase is responsible for discovering raw communities in the

input network. Initially, all nodes are unassigned and do not belong to any community.

Next, a random node is selected as the first member (or the seed) of a new community

C , and consequently, new members who help to maximize C ’s persistence probability

are gradually admitted into C . When there is no more node that can improve this

objective of the current community, another new community is formed and the whole

process is then cycled in the very same manner on this newly formed community.

Strengthening phase. We further rearrange nodes into more appropriate communities.

Since new members are admitted into a community C in a random order, C ’s objective

value could be further improve with the absence of some of it members as they can be

135

Algorithm 17 SCD Algorithm
Input: A directed weighted graph G = (V ,E ,w)
Output: Community structure C

Growing Phase:
C ← ∅
A← V

while ∃ unassigned node u ∈ A do
C ← {u}
A← A \ {u}
while ∃ v ∈ A such that uC∪{v} > uC do

v ← argmaxv∈A{uC∪{v}}
C ← C ∪ {v}
A← A \ {v}

end while
C ← C ∪ {C}

end while

Strengthening Phase:
for C ∈ C do

while ∃u ∈ C such that uC < uC\{u} do
C ← C \ {u}
C ← C ∪ {u}

end while
end for

Refining Phase:
while ∃C1,C2 such that uC1∪C2

> uC1
+ uC2

do
(C1,C2)← argmaxC1,C2∈C{uC1∪C2

− uC1
− uC2

}
C ← (C \ {C1,C2}) ∪ {C1 ∪ C2}

end while
Return C

obstacles for the total stability. This requires the reevaluation of all C ’s members as a

result. Therefore, in this phase, we exclude any node which reduces the persistence

probability of a community and let them be singleton communities. The removal of

such nodes creates more cohesive communities, i.e., communities with higher internal

stability.

Refining phase. In the last phase, the global stability of the whole network

is reevaluated. In particular, this last refinement phase looks at the merging of

136

two adjacent communities in order to improve the overall objective function. If two

communities have a great number of mutual connections between them, it is thus more

stable to merge them into one community. The final algorithm, which we call SCD

algorithm, is presented in Alg. 17.

7.4 Experimental Results

In this section, we present our results on the discovery of network communities

on both synthesized networks with known groundtruths and real-world social traces

including NetHEPT and NetHEPT WC collaboration and Facebook networks. We

evaluate the following aspects of our proposed SCD framework (1) the effectiveness

of our link stability estimation process, (2) the ability of identifying the general network

community structure without the concept of community stability, i.e., how similar our

detected communities are in comparison with the groundtruths, and (3) the ability of

identifying stable communities in reference to the consensus of other state-of-the-art

methods, including Blondel’s [6], Infomap [93] and OSLOM [61] methods, after their

multiple executions.

7.4.1 Datasets

(Synthesized networks) Of course, the best way to evaluate our approaches is to

validate them on real-world networks with known community structures. Unfortunately,

we often do not know that structures beforehand, or such structures cannot be easily

mined from the network topologies. Although synthesized networks might not reflect

all the statistical properties of real ones, they can provide us the known groundtruths

via planted communities and the ability to vary other network parameters such as

sizes, densities and overlapping levels, etc. Testing community detection methods on

generated data has also becomes a usual practice that is widely accepted in the field

[55].

We use the well-known LFR benchmark [55] to generate 190 weighted and directed

testbeds. Generated data follow power-law degree distribution and contain embedded

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 5

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

A Networks with minC ,maxC unconstrained.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
N

M
I

(N
 =

 5
0

0
0

)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

B Networks with minC = 25,maxC = 50 (small-size).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 1

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
M

I
(N

 =
 5

0
0

0
)

µ

SCD
SCD-NLP

Blondel
Oslom

Infomap

C Networks with minC = 50,maxC = 100 (big-size).

Figure 7-2. Results on synthesized networks with different community criteria.

communities of varying sizes that capture characteristics of real-world networks.

Parameters are: the number of nodes N = 1000 and 5000, the mixing parameter

µ = [0.1...1] controlling the overall sharpness of the community structure, the minimum

(minC) and maximum (maxC) of community sizes are set to (25, 50) for small-size and

(50, 100) for big-size communities as in the standard settings. Each test is averaged

over 100 runs for consistency.

138

(NetHEPT and NetHEPT WC) The NetHEPT traces are widely-used datasets for

testing social-aware detection methods [11][12]. These traces contain information,

mostly the academic collaboration from arXiv’s “High Energy Physics - Theory” section

where nodes stand for authors and links represent coauthorships. In their deliverable,

the NetHEPT networks contain 15233 nodes and 31398 links, and weights on edges are

assigned by either uniformly at random (for NetHEPT data) or by weighted cascade (for

NetHEPT WC data) where wuv = 1/din(v) with din(v) is the indegree of a node v .

(Facebook) This dataset contains friendship information among New Orleans

regional network on Facebook, spanning from September 2006 to January 2009 [100].

The data contains more than 63K nodes (users) connected by more than 1.5 million

friendship links with an average node degree of 23.5. In our experiments, the weight

for each link between users u and v is proportional to the communication frequency

between them, normalized on the whole network.

7.4.2 Metric

To measure the quality of the detected communities in comparison with the

embedded groundtruths, we evaluate Generalized Normalized Mutual Information

(NMI) [55]. Basically, the NMI(U,V) value of two structures U and V is 1 if U and V are

identical and is 0 if they are totally separated. This is the most important metric for

a community detection algorithm because it indicates how good the algorithm is in

comparison with the planned communities. Higher NMI values are expected for a better

community detection algorithm.

7.4.3 Effect of link stability estimation

We first evaluate the effect of our link stability estimation on the detection of network

communities by comparing NMI values of SCD and its version with No Link stability

Prediction (SCD-NLP). Due to space limit, results of SCD and SCD-NLP are also

reported in Figure 7-2, where those on general community structure detection are also

presented.

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

NetHEPT

NMI
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

NetHEPT-WC

NMI
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blondel Infomap Oslom

Facebook

NMI
Jaccard

Figure 7-3. Performance of SCD in detecting stable communities on real social traces.

In general, SCD-NLP performs very competitively even without being preprocessed:

on synthesized networks with no community size constraint (Figure 7-2A), its discovered

communities are almost of perfect similarity to the embedded ones (NMI values

approximately 1) on µ = [0...0.5] whereas the quality drops down quickly when µ is

above 0.5. We note that this drop of detection quality is controversial and does not

necessary imply a bad performance since networks with µ > 0.5 is consider very

stochastic, and thus, may not contain a clear community structure. Nevertheless, with

the help of the stability estimation, the performance is now boosted up significantly on

SCD as the detection qualities are very high even for µ > 0.65 (N = 1000) and µ > 0.75

(N = 5000), and only drop down when the networks are extremely stochastic (µ > 0.8).

We next take a look at the cases where networks are constrained with small-sized

(Figure 7-2B) and big-sized communities (Figure 7-2C). We observe that, when

community sizes are constrained, SCD-NLP performs much better than before and

even overcome its prior limit µ = 0.5. In particular, the performance of SCD-NLP closely

approaches that of SCD, especially in large networks (N = 5000). However, SCD-NLP

appears to be sensitive to big-size communities in small networks as its quality drops

down quickly in Figure 7-2C (left), and seems to favor small-size communities as its

plots tend to tangle with those of SCD (Figure 7-2B). SCD detection quality, thanks to

the stability estimation, stays wealthy in all test cases.

140

In summary, these results indicate that (1) without the stability estimation process,

our suggested metric R appears to be a very good one to detect community structure

in general directed and weighted networks, and (2) when the community size is

constrained, link stability estimation has a little effect on the community detection

quality. However, in real-world social network settings where community sizes are

typically unknown, and therefore unconstrained, the stability estimation has a significant

effect on the detection of network communities. These experiments also confirm the

efficacy of our proposed stability estimation procedure.

7.4.4 General community structure detection

We next investigate on SCD’s ability to identify general network community

structure, i.e., without community stability, in comparison with the aforementioned

state-of-the-art detection methods. Results are reported in Figure 7-2.

In general, the performance of our SCD frameworks on synthesized networks

appears to be better than those of Blondel and Infomap methods, and only lags

behind Oslom’s when the networks are heavily stochastic. When the community size

is unconstrained, the detection quality of SCD and other methods, except for Blondel’s,

retain at nearly perfect on µ = [0...0.65] (N = 1000) and µ = [0...0.8] (N = 5000) and

then all degrade quickly. Among the three methods, Infomap’s performance appears to

be sensitive to some certain mixing threshold µ as it NMI values tend to drop directly

to 0, whereas Oslom and ours tend to drop down slower. On average, the NMI values

of SCD are about 8% and 3% better than those of Blondel and Informap methods, and

are about 2% lag behind those of Oslom method. Blondel’s method, on the other hand,

does not attain a good performance through due to low NMI values even at a low range

of mixing value µ. An possible explanation for this behavior of Blondel’s method is due to

the effect of resolution limit, as we shall discuss below.

When the embedded communities are constrained with small and large community

sizes, we observe the nearly same behavior of SCD, Oslom and Infomap methods as

141

depicted in Figures 7-2B and 7-2C. Blondel’s method gets a significant improvement in

these cases where its performance is closely related to the others. As we discussed

above, one possible reason for the bad behavior of Blondel’s method is due to

the resolution limit of modularity objective function [35]. As the community size is

unconstrained, this resolution limit can mislead Blondel method to merge some

communities whose are of small sizes in comparison to the rest of the network, thus

results in the low NMI values. On the other hand, this resolution limit does not take effect

when size constraints are imposed and thus the significant improvement. Our SCD

framework, as shown in section 7.3.3.2, can withstand this scaling limit as its obtains

highly competitively results. Moreover, the difference between our SCD and other

methods are insignificant on average which indicates that all methods are able to detect

network communities with high quality. This is not a surprising result since Blondel,

Oslom and Informap are currently state-of-the-art methods but a great motivation and

award for our SCD framework.

7.4.5 Results on stable community detection

In order to compare our results to the consensus of other detection methods, we

will adopt a strategy recently proposed in [59]. In particular, given a specific community

detection method A, its consensus (or stable) communities can be determined by: (i)

execute A on G np times to have np partitions (ii) find the matrix D = (Dij) where Dij is

the probability which vertices i and j of G are assigned to the same cluster among np

partitions (iii) all Dij ’s that are below a threshold τ will be disregarded (iv) Apply A on

D np times, so to create np partitions and (v) if all partitions are equal, stop (the result

matrix would be block diagonal). Otherwise go to step (ii). As suggested in [59], the

resulted communities are ideal candidates for stable structures as members commit

to their communities. We also compute the Jaccard index J(U,V) = |A∩B|
|A∪B| to better

evaluate the quality of the detected stable communities. Results are represented in

Figure 7-3.

142

As illustrated by the subfigures, even a single run of SCD is able to obtain very high

NMI scores and Jaccard indicies in comparison with the consensus of other methods

after multiple runs. In particular, community structures discovered by SCD on NetHEPT

and NetHEPT WC obtain nearly 70% similarity in comparison with Blondel, Infomap and

Oslom methods, meanwhile the Jaccard indicies indicate that, in average, almost 66%

number of nodes are found in common between SCD and the core structure of other

competitors. This show that communities discovered by SCD are indeed highly overlap

with core community structures identified by other detection methods, which in turns

implies that those clusters found by SCD are stable with high confidence. Surprising, in

both NetHEPT and NetHEPT WC networks, we observe the high similarity among the

consensus of Blondel, Infomap and Oslom methods even with difference in edge weight

distribution. This observation indicate those identified communities by SCD are, in fact,

stable in these networks.

Even in Facebook, a large network with real social interactions, the similarity

between consensus communities discovered by other methods and by SCD are still of

high similarity with nearly 60%, 50% similarity to those found by Blondel and Infomap

methods with over 50% overlap in the stable partitions as indicated by the Jaccard

indices. The achieved NMI values in comparison with Oslom method are relatively low

as their core communities do not appear to highly overlap (Jaccard index of only 35%).

We note that this low similarity does not indicate the unstability community structure of

our SCD framework since communities detected by Oslom can be overlapped with each

other, while SCD works towards disjoint community structure. Nevertheless, as just a

single run, the above competitively results in reference to other state-of-the-art methods

confirm the efficay and quality of our method in detecting stable network communities in

OSNs.

143

7.5 Conclusion

In this work, we investigate community structures in directed OSNs with more focus

on community stability. As an effort towards the understanding of stable communities,

we suggest an estimation procedure which provides helpful insights into the stability

of links in the input network. Based on that, we propose SCD, a framework to identify

community structure in directed OSNs with the advantage of community stability. We

explore an essential connection between the persistence probability of a community

at the stationary distribution and its local topology, which is the fundamental point

to back our SCD framework. Finally, we certify the efficiency of our approach on

both synthesized datasets with embedded communities and real-world social traces,

including NetHEPT collaboration and Facebook social networks, in reference to the

consensus of other state-of-the-art detection methods. Highly competitive empirical

results confirm the quality and efficiency of SCD on identifying stable communities in

OSNs.

144

CHAPTER 8
ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY

8.1 Introduction

As a first study on assessing the vulneraibility of the network community structure,

in this paper, we take the first step on understanding how the failures of crucial nodes

in the network will affect its community structure. Particularly, we are interested in

identifying network nodes whose removals trigger a significant restruction of the current

community structure. Formally, given the input network and a positive number k , we

introduce the Community Structure Vulnerability (CSV) which aims to find out a set

S of k nodes whose removal maximally transforms the current network community

structure to a totally different one, i.e., the new community structure resulted from the

removal of S is of least similarity to the original one, evaluated via the Normalized

Mutual Information [20] measure.

Knowledge about this crucial vulnerability of network community structure is of

considerable usage, especially for social-aware methods in mobile ad-hoc and online

social networks (OSNs). To give a sense of its effects, consider message forwarding

in DTNs. Since social-based forwarding strategies in DTNs rely on the highest ranked

nodes in each community to forward the message [47][80], the knowledge of this

vulnerability can help to either design routing algorithms that do not overload those

crucial devices, if they are those highly ranked ones in a community, or to design

an effective backup plan when some of them may fail at the same time. In worm

containment application in OSNs [82][110], this knowledge can provide helpful insights

into the protection of those sensitive nodes, if they are indeed high influential users,

once worms spread out in the network. As a result, the identification of nodes whose

removal triggers a massive restruction of the community structure is extremely important

for the network’s regular operation. However, under a minor structural change when a

node is excluded from a community, this particular community can either stay intact if the

145

removed node is less important, or can be broken down into smaller subcommunities

which can further be merged to other communities if the current node is of great

important to the community. This unpredictable transformation of network communities

together with their large scales in reality make the assessment of community structure

vulnerability a fundamental yet challenging problem.

8.2 Problem Definition

In this section, we first define the graph notations that will be used thoroughly in

this paper. We then describe Normalized Mutual Information (NMI) [20], a concept

in Information Theory, as a metric to assess the difference between community

structures before and after the removal of important nodes. Finally, we formally define

the Community Structure Vulnerability problem - our main focus in this paper.

(Notations) Let G = (V ,E) be an undirected unweighted graph representing a

network where V is the set of |V | = N nodes (e.g., users), and E is the set of |E | = M

links. For any node u ∈ V and a set C ⊆ V , let N(u), du and dCu be the set of all

neighbors of u, its degree in G and its degree in C , respectively. Furthermore, let

nC = |C | be the number of nodes and mC be the number of internal edges in C .

(Community structure) Denote by A the specific community detection algorithm that

will be applied on G , and by X = {X1,X2, ...,XcX},Y = {Y1,Y2, ...,YcY } the two (possibly

overlapped) community structures of cX and cY communities detected by A before and

after the removal of a set S of k nodes in G , respectively. Mathematically, X and Y are

represented as X = A(G) and Y = A(G [V \S]), where G [V \S] is the subgraph induced

by V \S on G . For any index i = 1, ..., cX and j = 1, ..., cY , let xi = |Xi |, yj = |Yj |, and

nij = |Xi ∩ Yj |. Finally, let �x =
∑cX

i=1 xi , �y =
∑cY

j=1 yj and �n =
∑cX

i=1

∑cY
j=1 nij be the total size

of communities in X and Y , and the total number of common nodes shared between X

and Y , respectively.

(Normalized Mutual Information) In order to evaluate how much the network

community structure changes before and after the removal of important nodes, we

146

utilize the concept of Normalized Mutual Information suggested in [20]. Basically, given

two structures X and Y , NMI (X ,Y) is 1 if X and Y are identical and is 0 if X and Y

are totally separated, and the higher the NMI score, the more similarity between X

and Y . As a result, NMI is a well-suited metric dedicated for certifying the quality of

community structures discovered by different detection algorithms. The effectiveness of

this widely-accepted measure has also been extensively verified in the literature [55].

Formally, NMI (X ,Y) is defined as

NMI (X ,Y) =
2I (X ,Y)

H(X) + H(Y)
,

where H(X), H(Y) and I (X ,Y) are the entropy of structures X and Y , and the Mutual

Information conveyed between them, respectively. More details about NMI formulation

will be elaborated in our analysis.

(Problem definition) Finally, the Community Structure Vulnerability (CSV) problem is

formulated as follow.

Definition 1. Given a network represented by an undirected and unweighted graph G ,

a specific community detection algorithm A, and a positive integer k ≤ N, we seek for a

subset S ⊆ V such that

S = argmin
T⊆V ,|T |=k

{NMI (A(G),A(G [V \T]))}.

In other words, CSV problem seeks for a subset S ⊆ V of k nodes whose removal

results in the maximum difference between the initial community structure X and the

new community structure Y detected by A on G [V \S]. We call S the Node-Vulnerability

set of G since its removal maximally transforms network communities of G to different

structures.

Remark. The formulation of CSV requires the community detection algorithm A

as an input parameter. Because there is not yet an universal agreement or accepted

definition of a network community, this input is necessary in the sense that different

147

algorithms with different objective functions might favor different sets of nodes, and

thus, a good solution set for one community detection algorithm may not be good for

the others. However, when there is a clear objective function for finding community

structure, such as maximizing Modularity Q [55] or the total internal density [80], this

requirement can be lifted. Nevertheless, the node selection strategy that relies more on

the input network and less on the community detection algorithm is always of desire.

8.3 Analysis of NMI Measure

In this section, we investigate the possible conditions on sizes and the number

of communities that can potentially lead to either the global or local minimization of

NMI (X ,Y). We stress that these conditions are by no means universal or exhaustive

since some of them might not hold true simultaneously, given the input parameters.

Indeed, what we hope for is these conditions would provide us key insights into the

selection of important nodes to maximally separate X and Y . In the coming paragraphs,

we first discuss the NMI formulation in a greater detail, and then analyze it in terms of

both disjoint and overlapping community structures.

8.3.1 NMI formulation

To evaluate NMI (X ,Y) [20] where X = {X1,X2, ...,XcX} and Y = {Y1,Y2, ...,YcY },

we start out by considering community assignments Xi and Yj , where Xi and Yj indicate

the community labels of a node t in X and Y , respectively. Without loss of generality, we

can aslo assume that the labels Xi and Yj are also values of two random “variables” X

and Y (here we reuse notations X and Y to denote the two random variables), with joint

distribution

P(Xi ,Yj) = P(X = Xi ;Y = Yi) = nij/(N − k),

and individual distribution

P(Xi) = P(X = Xi) = xi/N,

P(Yj) = P(Y = Yj) = yj/(N − k).

148

The entropy (or uncertainty) of X and Y is defined as [18]

H(X) = −
cX∑
i=1

P(Xi) logP(Xi) = −
cX∑
i=1

xi

N
log

xi

N
,

H(Y) = −
cY∑
j=1

P(Yj) logP(Yj) = −
cY∑
j=1

yj

N − k
log

yj

N − k

=
1

N − k

(
�y log(N − k)−

cY∑
j=1

yj log yj
)
.

Note that in CSV problem, X can be derived straightforwardly based on A and G , and

thus, quantities xi ’s can also be inferred from these input parameters. Therefore, we

simply consider xi ’s and H(X) as constants in this paper.

The Mutual Information I (X ,Y) [18] of two random variables X and Y is defined as

I (X ,Y) =

cX∑
i=1

cY∑
j=1

P(Xi ,Yj) log
P(Xi ,Yj)

P(Xi)P(Yj)

=

cX∑
i=1

cY∑
j=1

nij

(N − k)
log

Nnij

xiyj
.

This measure is symmetric and it tells us how much we know about variable (or

structure) Y if we already know about variable X , and vice versa. However, as indicated

in [20][55], Mutual Information itself is not ideal as a global similarity metric since

any subpartition of a given community structure X would result in the same mutual

information with X , even though they can possibly be very different from each other. As

a result, [20] introduces the Normalized Mutual Information which can overcome that

limitation. Formally, NMI of two random variables X and Y is defined as

NMI (X ,Y) =
2I (X ,Y)

H(X) + H(Y)
(8–1)

In term of notations, NMI (X ,Y) can be written as

2
∑cX

i=1

∑cY
j=1 nij log

Nnij
xiyj

(N − k)H(X) + �y log(N − k)−
∑cY

j=1 yj log yj
(8–2)

149

8.3.2 Minimizing NMI in a disjoint community structure

When network communities are disjoint from each other, we have Xi ∩ Xs = ∅,

∪cXi=1Xi = V , Yj ∩ Yt = ∅, and ∪cYj=1Yj = V \S for all i , s = 1, ..., cX and all j , t = 1, ..., cY .

As a result, the following equalities hold true: �x =
∑cX

i=1 xi = N, �y =
∑cY

j=1 yj = N − k and

�n =
∑

ij nij = N − k (∗).

8.3.2.1 Minimizing NMI within a community

We first investigate the behavior of NMI (X ,Y) in a special case where only one

specific community of X is affected by the removal of set S of k nodes while other

communities stay intact. We can assume that X1 is the targeted community which is

further divided into p smaller subcommunities of sizes s1, s2, ..., sp satisfying
∑p

j=1 sj =

x1 − k . In this case

H(Y) =

p∑
j=1

sj

N − k
log

N − k

sj
+

cx∑
i=2

xi

N − k
log

N − k

xi

=
(x1 − k) log(N − k) +

∑cX
i=2 xi log

N−k
xi
−
∑p

j=1 sj log sj

N − k
,

and

I (X ,Y) =

p∑
j=1

sj

N − k
log

N

x1
+

cx∑
i=2

xi

N − k
log

N

xi

=
x1 − k

N − k
log

N

x1
+

cX∑
i=2

xi

N − k
log

N

xi
.

Thus, NMI (X ,Y) is minimized when
∑p

j=1 sj log sj is minimized. Since function s log s is

strictly convex for any s > 0, we apply Jensen’s inequality [18] to this summation and get

1

p

p∑
j=1

sj log sj ≥
∑p

j=1 sj

p
log

∑p

j=1 sj

p
=

x1

p
log

x1

p
,

with the equality holds when all sj ’s are equal to each other. It reveals from this

inequality that, in order to further minimize the RHS quantity, one can try to break X1

into as many smaller communities of the relatively same size as possible (i.e., to enlarge

150

p as much as possible while ensuring si ’s are all equal). This intuition makes senses

since a new structure of X1 with all singleton communities will incur
∑p

j=1 sj log sj = 0,

and hence, will maximize H(Y) and in turn will minimize NMI (X ,Y). However, since the

new structure of X1 depends on the community detection algorithm A, the all-singleton

communities scenario might not always be the case. Furthermore, will this crucial

observation hold true in a general disjoint and overlapping community structure? We

tend to lean over the affirmative answer through our analysis in the coming subsections.

8.3.2.2 Minimizing NMI in a general disjoint community structure

In general disjoint community structure, the equalities (∗) help to simplify NMI (X ,Y)

(eq. 8–2) to
2
∑cX

i=1

∑cY
j=1 nij log

Nnij
xiyj

(N − k)H(X) + (N − k) log(N − k)−
∑cY

j=1 yj log yj
.

In order to minimize the above ratio, one would seek for the conditions in which the

numerator of NMI (X ,Y) is minimized while its denominator is also maximized. To

maximize the latter quantity, we need to minimize
∑cY

j=1 yj log yj . Applying Jensen’s

inequality to this summand gives

1

cY

cY∑
j=1

yj log yj ≥
�y

cY
log

�y

cY
=

N − k

cY
log

N − k

cY
,

and thus
∑cY

j=1 yj log yj can attain it minimum at (N − k) log N−k
cY

with equality holds

when all yj ’s are equal to each other. As N and k are input parameters, log N−k
cY

can

further be minimized when cY is as large as possible, while requiring yj ’s to be equal

to each other. Mathematically, this can be achieved when Y contains exactly cY ≡

(N − k) singleton communities. However, since our problem depends on the detection

algorithm, this inequality advises that the newly community structure Y should contain

as many communities of relatively the same size as possible. We take into account

this observation as it will play a key role in our important-node selection process. This

observation is also coincident with what inferred in the prior special case, and intuitively

agrees with the concept of Critical Node Detection (CND) [25] and Balanced Graph

151

Partitioning (BGP) [2] whose goals aim to delete nodes and cut the input graph into p

connected components of relatively the same size. However, CSV fundamentally differs

from these problems in the senses that connected components in BGP and CND do not

necessarily reflex network communities.

In order to minimize the numerator, we rewrite it as

I (X ,Y) =
1

N − k
(
∑
ij

nij log
Nnij

yj
−
∑
ij

nij log xi).

Applying Log Sum Theorem [18] to the first summand gives

I (X ,Y) ≥ 1

N − k

(
�n log

N�n

cX�y
−
∑
ij

nij log xi

)
= log

N

cX
− 1

N − k

∑
i

(xi − li) log xi ,

because �n = �y = N − k and
∑cY

j=1 nij = xi − li , ∀i = 1, ..., cX , where li is the number

of deleted (or lost) nodes in community Xi , and li ’s satisfy
∑cX

i=1 li = k . The equality

holds when nij/yj is a constant, say γ ≥ 0, for all i = 1, ..., cX , j = 1, ..., cY . If we

assume that this is the case, then
∑cY

j=1 nij = γ
∑cY

j=1 yj = γ(N − k), which in turn implies

N − k =
∑

ij nij = cXγ(N − k). Hence, γ = 1/cX and thus, li = xi − (N − k)/cX . Therefore,

to minimize the second summand, the equation li = xi − (N − k)/cX advises that we

should put more focus on (i.e., remove more nodes in) big-sized communities Xi of X

to break it into smaller modules. This breaking down of big-sized communities partially

supports the prior observation that communities of Y should have relatively the same

size. Note that in this analysis, we have assumed that nij/yj is a constant for all pair of

i and j . In practice, this might not always be the case since real communities can be

distributed differently based on the underlying detection algorithm. Nevertheless, we find

this observation helpful as it suggests a general instruction for selecting important nodes

in the network.

152

8.3.3 Minimizing NMI in an overlapped community structure

The minimization of NMI (X ,Y) measure is much more complicated when network

communities can overlap with each other. In particular, the conditions ∪cXi=1Xi = V and

∪cYj=1Yj = V \S still hold in this case; however, Xi ∩ Xs and Yj ∩ Yt might not be empty

for some i , s = 1, ..., cX and j , t = 1, ..., cY . These facts indicate that �x =
∑cX

i=1 xi ≥ N,

�y =
∑cY

j=1 yj ≥ N − k and �n =
∑

ij nij ≥ N − k .

Our analysis strategy in this case is similar to the prior one as we also strive for

maximizing the denominator while minimizing the numerator of NMI (X ,Y) (eq. 8–2).

Because �n ≥ N − k , the minimization of the top term I (X ,Y) no longer depends only on

xi ’s anymore. One way to work around this issue is to investigate the relative correlation

between the total community size �y and the number of communities cY . Let αA = �y
cY

be

the ratio between these two quantities, or in other words, the averaged community size.

The denominator of NMI (X ,Y) is evaluated as

�y log(N − k)−
cY∑
j=1

yj log yj ≤ �y

(
log(N − k)− log(�y/cY)

cY

)
= �y log (N − k)− αA logαA.

with equality holds when all yj ’s are equal to each other. To further maximize this

denominator, we need �y to be as large as possible while keeping αA as small as

possible, i.e., the new community structure Y should contain more and more communities

as to increase cY as well as to lower down αA.

Due to the dependence on the specific detection algorithm A, this optimization on

the correlation between �y and cY might not be globally achieved. However, a coarse

analysis between �y and cY can relatively be conducted in the following senses: if we

assume that �y is within a constant factor of the total number of actual nodes (N − k),

i.e., �y ≤ a0(N − k) for some constant a0 > 1, we can then increase the value of the

RHS by breaking as many communities as possible while keeping them having the size

(i.e., enlarge cY and keep yj ’s are all the same), which helps to reduce the impact of

153

αA logαA. This observation, though relative, agrees with what we achieved in the case

of disjoint community structure. In an unfortunate case where �y is not known to be within

any constant factor of (N − k), the observation might not hold since both �y and cY can

be arbitrary large and thus, αA logαA could still be relatively small.

Next, applying Log Sum Theorem on the numerator yields

I (X ,Y) =
∑
ij

nij log
Nnij

xiyj
≥ �n log

N�n

�x�y
,

with equality holds when Nnij
xiyj

is a constant for all i = 1, ..., cX and j = 1, ..., cY . Thus,

one can try to minimize I (X ,Y) by deleting nodes in such a way that �n is maximized and

�y is minimized while making sure that Nnij
xiyj

is a constant. As a result, this minimization

of I (X ,Y) is a multiple-objective optimizations problem which may not have a feasible

solution. However, if we assume that the later condition is imposed, i.e., Nnij
xiyj

= βA for

some constant βA > 0, then nij =
βAxiyj
N

, and thus �n = βA
N
�x�y . This reduces the above

inequality to

I (X ,Y) ≥ �x

N
βA�y log βAN.

The RHS of the inequality advises that, in order to minimized I (X ,Y), the total size

of network communities should not be too large while the overlapping ratio of every

community should be equal to each other and be as small as possible. This is a different

criterion from the disjoint community structure point of view.

8.4 A Solution to CSV Problem

In the following paragraphs, we consider the scenario when maximizing the

internal density [80] is the objective function for finding network communities, i.e.,

communities of G are assumed to have optimized internal densities. In this manner,

we present genEdeg, an algorithm for solving CSV problem that is independent of the

underlying community detection algorithm A. Our solution strategy will try to break

larger communities to as many small ones as possible while looking for them to have

the relatively same size with small overlapping ratios. The idea of our strategy is based

154

on the following intuition: since communities in X are optimized for their internal density,

they are likely to contain strong substructures that are tightly connected which form the

cores of these communities. As a result, the removal of crucial nodes in a core might

potentially break the community into smaller modules. Moreover, as nodes in a core are

tightly connected, there should be some edge that generate them, i.e., all nodes in the

core are incident to both endpoints of this edge. Inspired by this intuition, our strategy

works towards the identification of these generating edges of a community, and then

seek for the minimum set of generating edges that composes the original communities.

Let D be a subset of V . Denote by 	(D) = 2mD

nD(nD−1)
the internal density of D and by

τ(D) = nD(nD−1)
2

− 2
nD (nD−1) the threshold function on the internal density of D, respectively.

For any nodes u, v ∈ D, if edge (u, v) is not in E , we call it a missing edge in D. In

addition, we call an edge in D “negative” if it is incident to a missing edge in D, and

“positive” otherwise. We define the concept of generating edges of D as follow

Definition 2. (Generating edge) For any edge (u, v) in D, if D = (D ∩ N(u) ∩ N(v)) ∪

{u, v} and 	(D) ≥ τ(D), we call (u, v) a generating edge of D. We further call D a local

core generated by (u, v) and write gen(u, v) = D.

For any community C of G , a set L ⊆ E is called a “generating edge set” of a C

if ∪(u,v)∈Lgen(u, v) = C . Since C can be generated by different generating edge sets

and we are constrained on the node budget, we would intuitively seek for the generating

edge set of minimal cardinality.

Definition 3. (Minimum Generating Edge Set) Given a community C of G , the MGES

problem seeks for a generating edge set L∗ of C with the smallest cardinality.

The cores generated by edges in a MGES of a community C of G are tightly

connected and they all together compose C . As a result, if we delete an endpoint

of every edge in a MGES, C will be broken into smaller modules with the number of

modules is at least the number of edges in a MGES (Lemma 16). Since our goal is to

break the current community structure X into as many new communities as possible,

155

the removal of crucial nodes defined by edges in a MGES will be a good heuristic

for this purpose. But first and foremost, we need to characterize all MGESs in the

current community structure X based only on the input network G . Lemma 17 realizes

the location of the generating edge(s) of a local core in a community C : they have to

adjacent to nodes with the highest degree in C . Based on this result, we present in Alg.

18 a procedure that can correctly find the MGES of a given community C (Theorem 8.1).

Algorithm 18 An optimal algorithm for finding the MGES
Input: Network G = (V ,E) and a community C ∈ X ;
Output: Minimum generating edge set L∗ of C ;

0. Mark all nodes as “unassigned” and L∗ = ∅.
1. Remove all negative edges in C . If any edge(s) survive, they are candidate for
generating edges in their corresponding communities, including them to L∗, go to step
2. Else, go to step 3.
2. Reconstruct local cores based on generating edges found in step 1. Mark all nodes
in those communities as “assigned”. Discard generating edges in L∗ that fall into any
newly constructed communities. Return if all edges are assigned.
3. Find the set U as in Lemma 17. Find the edge in NE(U) that can generate a local
community having the largest size. Include this edge to L∗ and mark all nodes in the
new local community as “assigned”. Ties are broken randomly. Return if all edges are
assigned.
4. If there are still unassigned nodes, say the set I ⊆ C , construct G1 = G [(I ∪ N(I)) ∩
C]. Go to back to step 1.

Lemma 16. Let L∗ be a MSGE of a community C . The removal of an endpoint in every

edge of L∗ will break C into at least |L∗| subcommunities.

Proof. Clearly, the removal of an endpoint of every edge in L∗ will degrade the internal

density of each core since the endpoint of the generating edge is of full degree in its

core. Now, if the number of subcommunities resulted in the node removal is less than

|L∗|, it means there are at least two cores that are merged together. That is there are

cores c1 and c2 are merged together even with less internal density. This should not be

the case since otherwise, they have to be identified as a single core at the first place.

156

Their combination, as a result, implies that C has a MGES of size less than |L∗|, which

raises a contradiction to the assumption that L∗ is a MGES of C .

Lemma 17. Let C be a subset of V , U = {u ∈ C |dCu is the highest in C} and NE(U) =

{(u, v)|u ∈ U or v ∈ U but not both }. Then, |NE(U) ∩ L∗| ≥ 1.

Proof. After each refreshment in step 2, let u be the node with the highest indegree in

C . After step 1 of Alg. 18, all negative edges are deleted since they do not contribute to

the actual generating set L∗. As such, edges incident to u are not negative. This in turn

implies that they are candidates for generating edges. Now, iterate through all edges

incident to u and choose the one that generates the biggest-sized core. This edge

should be in the list L∗.

Theorem 8.1. Let dC be the maximum in-degree of a node in C . Alg. 18 takes O(dC |C |)

time in the worst case scenarios and returns an optimal solution for MGES problem.

Proof. Since every time Lemma 17 makes sure that at least one edge should be added

to L∗ and the procedure terminates when no edges left, the Alg. 18 should terminate.

Moreover, it is verifiable that Alg. 18 take at time as most the number of edges in C ,

which is O(dC |C |). Also, due to the intense internal density of a core, every time an

edge is added into L∗, that edge actually generates the largest core possible. The proof

follows from this fact, Lemma 17 and the exhaustive property of Alg. 18.

Algorithm 19 genEdge - A node selection strategy for CSV based on generating edges
Input: Network G = (V ,E), X = A(G);
Output: A set S ⊆ V of k nodes;

1. Use Alg. 18 to find L∗
Xi

for all communities Xi ’s in X .
2. Sort all communities Xi ’s in X by their sizes of MGSEs.
3. Sort all nodes in G by the number of generating edges that they are incident to in
Xi . If there is a tie, sort them by their degrees in G .
4. Return top k nodes in step 3.

With the optimal solution of MGES taken into account, we next suggest a heuristic

for selecting important nodes following the guidelines suggested in the previous. In

157

particular, our heuristic selects nodes in a greedy manner, starting from communities

that have large-size MGESs. Moreover, in the MGES of each community C , we give

priority to nodes that are incident to more generating edges since their removals will

break C into more subcommunities.

8.5 Experimental Results

In this section, we show the empirical results of our node selection strategy for CSV

on both synthesized networks with known community structures and real-world social

traces including the Reality mining cellular dataset [29], Facebook [100] and Foursquare

[21] social networks. In order to certify the performance of our approach, we compare

the results obtained by the following methods: High degree centrality (highDeg) selects

top k nodes in G with the highest degrees, betweeness centrality (betweeness) selects

top k nodes in G with the highest betweenesses (where the betweeness of a node u is the

number of shortest paths in G that pass through u), Generating edges (genEdge) - our

strategy described in Alg. 19, and finally, Node Importance (nodeImp) [105] selects top k

nodes by their importance to the community structure.

We first examine the effect of the underlying community detection methods by

comparing results obtained by AFOCS [80], Blondel [6] and Oslom [61] algorithms to

the embedded groundtruths. In particular, we set X to be the groundtruth community

structure and when S is removed from the network NMI (X ,Y) is reported, where

Y = AFOCS(G [V \S]), Y = Blondel(G [V \S]) and Y = Oslom(G [V \S]), respectively.

These methods have been empirically certified in the literature to the best algorithms

for finding non-overlapping and overlapping community structure [55]. Verifying our

strategy on synthesized networks not only certifies its performance but also provides us

the confidence to its behaviors when applied to real-word traces. We next demonstrate

the following quantities (1) the NMI differences between community structures before

and after the node removal, which is our main objective function, (2) the number of

158

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
A
F
O
C
S
)

k

higDeg
betweeness

genEdge
nodeImp

A NMI scores by AFOCS

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
B
l
o
n
d
e
l
)

k

higDeg
betweeness

genEdge
nodeImp

B NMI scores by Blondel

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
O
s
l
o
m
)

k

higDeg
betweeness

genEdge
nodeImp

C NMI scores by Oslom

Figure 8-1. Comparison among different node selection strategies on synthesized
networks with N = 2500 nodes

159

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
A
F
O
C
S
)

k

higDeg
betweeness

genEdge
nodeImp

A NMI scores on AFOCS

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
B
l
o
n
d
e
l
)

k

higDeg
betweeness

genEdge
nodeImp

B NMI scores on Blondel

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

N
M
I

(
O
s
l
o
m
)

k

higDeg
betweeness

genEdge
nodeImp

C NMI scores on Oslom

Figure 8-2. Comparison among different node selection strategies on synthesized
networks with N = 5000 nodes

160

communities in the new structure, and (3) the average size of the network communities

in the new structure.

8.5.1 Results on synthesized networks

Set up: We use the well-known LFR overlapping benchmark [55] to generate

test networks. The number of nodes are N = 2500 and 5000, the mixing parameter

µ = 0.15, the community sizes cmin = 10 and cmax = 50 for N = 2500 and cmin = 30

and cmax = 100 for N = 5000. At every k nodes are removed from the network, the

network community structure is reidentified and compared to the original embedded one

(or the ground-truth). The overlapping threshold β in AFOCS is set at 0.7 and all tests

are averaged on 100 runs for consistency.

8.5.1.1 Solution quality

We first evaluate the performance of all aforementioned node selections strategies

on different community detection algorithms AFCOS , Blondel and Oslom, respectively.

Because the ground-truth communities on synthesized networks are given a priori,

comparisons through NMI scores among these strategies as well as among detection

algorithms are therefore valid, and the lower NMI scores a strategy obtains, the more

effective it seems to be. In addition, the higher the remaining NMI measure a detection

algorithm obtains after the node removal, the more resistant to node vulnerability it

seems to be.

The quality of node selection solutions, are reported in figures 8-1 and 8-2. In a

general trend, NMI scores tend to drop down quickly as more nodes are removed from

the network when N = 2500; however, they degrade much slower in networks with

N = 5000. The first observation revealed in those figures is that our approach genEdge

achieves the best (lowest) NMI scores on almost all test cases. In average, on networks

with 2500 nodes, genEdge is 14% better than both highDeg and betweeness, and is 12%

better than nodeImp on AFOCS algorithm; and is 19%, 11% and 5% better than highDeg,

betweeness, and nodeImp on Blondel algorithm (figure 8-1A, 8-1B). On Oslom algorithm,

161

 140

 145

 150

 155

 160

 165

 170

 5 10 15 20 25 30 35 40 45 50

#
 o

f
c
o
m

m
u
n
it
ie

s

k

higDeg
betweeness

genEdge
nodeImp

A N = 2500

 10

 11

 12

 13

 14

 15

 5 10 15 20 25 30 35 40 45 50

A
v
g
.
c
o
m

m
u
n

it
y
 s

iz
e

k

higDeg
betweeness

genEdge
nodeImp

B N = 2500

 220

 225

 230

 235

 240

 245

 250

 5 10 15 20 25 30 35 40 45 50

#
 o

f
c
o
m

m
u
n
it
ie

s

k

higDeg
betweeness

genEdge
nodeImp

C N = 5000

 18

 19

 20

 21

 22

 23

 5 10 15 20 25 30 35 40 45 50

A
v
g
.
c
o
m

m
u
n
it
y
 s

iz
e

k

higDeg
betweeness

genEdge
nodeImp

D N = 5000

Figure 8-3. Results obtained by AFOCS on networks with N = 2500 nodes and
N = 2500 nodes.

genEdge differs insignificant with highDeg and betweeness with 1.5% and 1.4% better,

and is only lagged behind nodeImp with 3% lower NMI scores. On network with 5000

nodes, genEdge still outperforms other strategies with 12% lower NMI scores than the

others on AFOCS algorithm, and with 23%, 8% and 6% lower NMI scores than highDeg,

betweeness and nodeImp on Blondel algorithm, and finally, with 7%, 10% and 8% better

than the others on Oslom algorithm (figure 8-2). These results imply that genEdge node

selection strategy performs excellently with competitive results on different community

detection algorithm in comparison with other strategies.

The second observation we obtain from figures 8-1 and 8-2 is that the top-of-the-list

node seems to be essential to the network community structure. The removal of only

162

this node from the network brings the NMI scores to as low as 0.7 - 0.8 on AFOCS

(figure 8-1A, 8-2A), to 0.58 - 0.6 on Blondel algorithm (figure 8-1B, 8-2B), and to 0.7

on Oslom algorithm. Furthermore, the top 15-20 nodes are also vital to the network

community structure detected by Oslom and Blondel since their destruction brings

the NMI scores down to 0.5, the threshold where the community structure become

stochastic and fuzzy to recognize. The NMI values on AFOCS algorithm, on the other

hand, do not suffer from this destruction as they only come close to 0.5 when almost

k = 50 nodes are removed from the networks with N = 2500 nodes (figure 8-1A).

Finally, the last observation inferred from figures 8-1 and 8-2 is that, among the

three community detection algorithms, AFOCS algorithm obtains the highest remaining

NMI values when the same number of nodes is removed from the networks. In other

words, AFOCS was able to detect the community structure which was of the most

similarity to the ground-truth communities. As we discussed above, this observation

implies that AFOCS seems to be the detection algorithm which is more resistant to

node vulnerability than the other algorithms. Therefore, we employ AFOCS as the main

community detection algorithm to further analyze network communities of real-world

traces.

8.5.1.2 The number of communities and their sizes

We next examine the number of communities and their sizes when k important

nodes are removed from the network. As discussed in subsection 8.4, our selection

strategy gives priority to breaking the current community structure into more communities

while looking for their sizes to be relatively the same in order to minimize NMI measure.

The results are presented in figure 8-3.

As reported in these figures, the numbers of new communities generated by

genEdge tend to increase as more nodes are excluded; however, they differ insignificantly

from other methods on small networks of 2500 nodes (figure 8-3A), but the differences

become more visible on larger networks of 5000 nodes (figure 8-3C). In particular, the

163

Table 8-1. Statistic of social traces
Data N M Avg. Deg Max.

Com. Size
Reality 100 3100 62 35
Facebook 63731 1.5M 23.50 33425
Foursquare 47260 1.1M 49.13 30381

number of communities generated by genEdge is the second highest when N = 5000

(only below betweeness method) while the average sizes of communities are relatively

equal to other methods (figure 8-3B and 8-3D). One might question why the NMI

scores returned by genEdge is still high since its number of communities and average

community size are relatively the same as the other. One possible reason is because

new communities formed by other strategies might possibly be the subcommunities

or parts of of the original structure, which in turn results in high similarity to the

ground-truth. Our strategy, on the other hand, makes sure that once a node incident

to the most generating edges is excluded, the subcommunity structure is broken and

the new community structure has little similarity to the original one, and hence, the lower

NMI measures.

8.5.2 Results on real-world traces

We further present the empirical results of CSV on real-world networks including

Reality mobile phone data [29], Facebook [100] and Foursquare [21] datasets. The

overview of these datasets is summarized in Table 8-1.

Reality Mining dataset provided by the MIT Media Lab. This dataset contains

communication, proximity, location, call, and activity information from 100 students

at MIT over the course of the 2004-2005 academic year. Facebook dataset contains

friendship information (i.e., who is friend with whom and wall posts) among New

Orleans regional network on Facebook, spanning from Sep 2006 to Jan 2009. To

collect the information, the authors created several Facebook accounts, joined each

164

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge
nodeImp

A Reality

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge
nodeImp

B Foursquare

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

N
M

I

Number of removal nodes k

higDeg
betweeness

genEdge

C Facebook

Figure 8-4. NMI scores on Reality mining data, Foursquare and Facebook networks
obtained by AFOCS (k = 50...1000)

165

to the regional network, started crawling from a single user and visited all friends in a

breath-first-search fashion. Foursquare dataset contains location and activities of 47260

users on Foursquare social network on May 2011 - Jul 2011. To collect the data, we

created several Foursquare accounts, joined to the network, started crawling from a

single user and visited all friends also in a breadth-first-search fashion.

On Reality Mining dataset, we set k = 1...20 and report result in figure 8-4A. It

reveals from this figure that community structure in this dataset is extremely vulnerable

to node attacks since the removal of only 2 nodes, found by genEdge is enough to make

the new community structure significantly differs from the original one as it brings down

the NMI values to 0.4. In comparison with other node selection methods, genEdge still

perform excellently and is about 14% - 17% better than the others. We note that the first

node identified by genEdge is indeed crucial to the community structure of this network

since it immediately brings down NMI score to 0.6 while the other does not seem to

discover this important feature. Furthermore, when too many nodes are removed from

the network, the network does seem to contain communities any more or the community

structure become extremely fuzzy as NMI values converge down to around 0.2. This is

understandable since this dataset is of small size with a very high average node degree.

On larger networks Facebook and Foursquare, we set k from 50 nodes to 1000

nodes (only 2.1% and 1.5% number of nodes of Foursquare and Facebook networks)

with a 50-node increment at a time. The numerical results are reported in figure 8-4.

In general, NMI values of all methods degrade quickly on Foursquare networks, and

tend to decrease slower on Facebook networks. As more nodes are excluded from the

network, genEdge still achieves the best performance on both networks with significantly

lower NMI values than the other methods. Specifically, on Foursquare with high average

degree and internal community density, the removal of nodes incident to the most

generating edges in genEdge significantly leads to the separation of network community

structure as NMI scores drop down to 0.2 in genEdge. On Facebook network, the

166

similarity between the original and new community structure seem to retain fairly high

even all 1000 nodes are removed, whereas the new structure of ArXiv network is at

the edge of stochastic threshold since the NMI measure is around 0.5. This implies

that community structure in Foursquare network is also extremely vulnerable to node

removal attacks, while the mature Facebook network does not seem to suffer this threat.

One possible reason for this is since Facebook contains a giant community with low

average degree, it therefore requires much more effort in order to break that giant

community apart.

In summary, the experiments on both synthesized and real-work social network

confirm the effectiveness of our proposed method based on generating edges. The

empirical results also confirm that, genEdge outperforms other heuristic methods on

other community detection methods such as AFOCS, Blondel and Oslom algorithms.

8.6 An Application in DTNs

We present a practical application where the detection of overlapping network

communities plays a vital role in forwarding strategies in communication networks.

In order to evaluate the impact of community restructuring in complex networks, we

compare the set of critical nodes identified by our community structure vulnerability

algorithm to the set of nodes selected using aforementioned algorithms. Furthermore, in

order to evaluate which one of the critical node set is the most critical, we study how the

removal of the critical node set influences the performance of routing in Pocket Switched

Networks (PSN), in terms of average message delivery ratio, and delivery-time.

PSNs are a particular case of DTNs, where the nodes of the network correspond

to actual people that are equipped with portable devices (i.e., mobile phones), and

that use these portable devices to communicate. Because of the high degree of

mobility of this type of networks, a path between a source and a destination seldom

exists, therefore most of the approaches to routing in this kind of environments adopt a

store-carry-and-forward approach. In store-carry-and-forward approaches, messages

167

are stored locally and, depending on the approach, they are forwarded or replicated to

the encountered nodes when an opportunity occurs. In this manner, a node is important

if it serves as a hub to forward the messages to other devices. As a result, the failures of

these important nodes shall degrade the message delivery ratio while shall incur more

duplicate messages and delivery time.

We use the HAGGLE dataset [94]. This trace was collected at the Infocom

conference in 2006 in Barcelona. 70 students and researchers attending the workshop

were equipped with iMote devices that registered they encounter for the duration of the

conference (3 days). In addition to the 70 mobile partecipants, approximately 20 static,

long range iMotes were deployed throughout the area of the conference. A total of 1000

messages are created and uniformly distributed during the experiment duration and

each message can not exist longer than a threshold time-to-live. In our evaluation we

will focus on the PSN routing algorithm inspired by BubbleRap [47]. While we expect

the performance of this protocol to deteriorate upon the removal of important nodes,

we expect the performances of BubbleRap to deteriorate more quickly, because of

the reliance of the protocol on the community structure. Because BubbleRap relies

on the knowledge of the community structure to route the messages, and because we

realize that different algorithms that attempt to find the community structure use different

objective functions that may be more susceptible to the removal of nodes, we consider

evaluate the average delivery ratio, average delivery time and the average number of

copied messages.

Results

As the removal of 10 node in Haggle dataset is enough to make it original

community structure to become stochastic (figure 8-6), we fix k = 10 and report the

results as a function of time − to − live (the amount of time a message can exist). The

performances of all methods are presented in figure 8-5. As reported in subfigures

8-5A, 8-5B and 8-5C, the removal of nodes selected by genEdge approach significantly

168

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400 450

A
v
g
.

N
u
m

.
D

e
liv

e
re

d
 M

e
s
s
a
g
e
s

Time to Live

higDeg
betweeness

nodeImp
genedge

A Avg. Delivered Messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450

A
v
g
.
D

e
liv

e
re

d
 T

im
e

Time to Live

higDeg
betweeness

nodeImp
genedge

B Avg. Delivery Time

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400 450

A
v
g
.
N

u
m

.
C

o
p
ie

d
 M

e
s
s
a
g

e
s

Time to Live

higDeg
betweeness

nodeImp
genedge

C Avg. Number of copied Messages

Figure 8-5. Simulation results on HAGGLE dataset.

169

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

N
M

I

k

higDeg
betweeness

genedge
nodeImp

Figure 8-6. NMI measure on Haggle dataset.

degrades the performance of BubbleRap forwarding and routing system in terms of

not only delivered messages and time but also the numbers of copied messages. As

depicted in subfigure 8-5A, the averaged number of messages delivered by BubbleRap

under genEdge and time − to − live = 450s is only two, whereas those under highDeg,

betweeness and nodeImp are four, three and three, which implies 100% and 50%

system downgrade when only 10 nodes are excluded from the networks. This also

means nodes selected by genEdge are of important role in maintaining the normal

operation of the whole network. Furthermore, when nodes are removed from the

network, one expects that the delivery time should be increased as a consequnce

because participants now have less chances to communicate with each other, and

thus, it should take longer for participating devices to forward the carried messages.

This intuition is nicely reflected in figure 8-5B. As reported in this subfigure, the

average amount of time required to deliver carried messages increases significantly

as time − to − live increases (note that from 0-100s, there was no message delivered,

and thus, the delivery time was 0). In terms of delivery time, the removal of nodes under

genEdge affects the system to requires a huge extra amount to deliver the messages in

comparison with other methods. In particular, the system delivery time under genEdge is

170

about 1.25x, 1.7x and 1.21x higher than that under betweeness, nodeImp and highDeg

when time − to − live = 450. Moreover, the number of copied messages, affected

by genEdge approach, is also the highest one among other methods. This means

that genEdge heuristic algorithm, indeed, selects appropriate nodes whose effects

significantly reduce the system performance as reported by the three evaluated factors.

171

CHAPTER 9
CONCLUSIONS

In this dissertation, we establish the fundamental knowledge on the following

aspects of the complex network science (1) the network organizational principals via

the discovery of its dynamic community structure (2) the assessment of the community

structure vulnerability, and (3) the social-based solutions for practical applications

enabled by complex systems, such as in online social networks and mobile networks.

We suggested two adaptive frameworks for discovering the dynamic network community

structure and analyze theoretical results that guarantee their performances. In the

execution perspective, our methods are adaptive, and thus, are scalable for very large

networks with very competitive experimental results.

To investigate the assessment of the network community structure vulnerability,

we introduce the new problem of identifying key nodes whose removal can maximally

reform the current network communities. Those nodes are important in maintaining

the normal functioning of the whole system, such as in the case of DTNs (in a mobile

network) or lung cancer (in a biological network). Our work presents first and preliminary

yet important insights, in terms of both theoretical results and heuristic algorithms, into

the vulnerability assessment of the network community structure.

In an application perspective, our work in this dissertation focuses on proposing

novel community structure-based solutions for the following emerging problems: the

forwarding and routing strategy in mobile networks, the worm containment problem in

social networks and the limiting misinformation spread in online social networks. Our

suggested strategies provide a significant improvement in terms of the solution quality

for those mentioned problems, and promise a wider range of applications enabled by

dynamic complex networks.

172

REFERENCES

[1] Ahn, Yong-Yeol, Bagrow, James P., and Lehmann, Sune. “Link communities reveal
multi-scale complexity in networks.” Nature 466 (2010): 761+.

URL http://arxiv.org/abs/0903.3178

[2] Andreev, K. and Räcke, H. “Balanced graph partitioning.” Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures.
SPAA ’04. New York, NY, USA: ACM, 2004, 120–124.

[3] Backstrom, Lars and Leskovec, Jure. “Supervised random walks: predicting
and recommending links in social networks.” Proceedings of the fourth ACM
international conference on Web search and data mining. WSDM ’11. New York,
NY, USA: ACM, 2011, 635–644.

URL http://doi.acm.org/10.1145/1935826.1935914

[4] Barnes, Earl R. “An Algorithm for Partitioning the Nodes of a Graph.” SIAM
Journal on Algebraic and Discrete Methods 3 (1982).4: 541–550.

URL http://link.aip.org/link/?SML/3/541/1

[5] Berry, Michael W., Browne, Murray, Langville, Amy N., Pauca, V. Paul, and
Plemmons, Robert J. “Algorithms and applications for approximate nonnegative
matrix factorization.” Computational Statistics and Data Analysis. 2006, 155–173.

[6] Blondel, Vincent D, Guillaume, Jean-Loup, Lambiotte, Renaud, and Lefebvre,
Etienne. “Fast unfolding of communities in large networks.” Journal of Statistical
Mechanics: Theory and Experiment 2008 (2008).10: P10008.

URL http://stacks.iop.org/1742-5468/2008/i=10/a=P10008

[7] Bose, Abhijit and Shin, Kang G. “Proactive security for mobile messaging
networks.” Proceedings of the 5th ACM workshop on Wireless security. WiSe ’06.
New York, NY, USA: ACM, 2006, 95–104.

URL http://doi.acm.org/10.1145/1161289.1161307

[8] Brandes, Ulrik, Delling, Daniel, Gaertler, Marco, Gorke, Robert, Hoefer, Martin,
Nikoloski, Zoran, and Wagner, Dorothea. “On Modularity Clustering.” IEEE Trans.
on Knowl. and Data Eng. 20 (2008).2: 172–188.

URL http://dx.doi.org/10.1109/TKDE.2007.190689

[9] Cazabet, R., Amblard, F., and Hanachi, C. “Detection of Overlapping Communities
in Dynamical Social Networks.” Social Computing (SocialCom), 2010 IEEE
Second International Conference on. 2010, 309 –314.

173

http://arxiv.org/abs/0903.3178
http://doi.acm.org/10.1145/1935826.1935914
http://link.aip.org/link/?SML/3/541/1
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://doi.acm.org/10.1145/1161289.1161307
http://dx.doi.org/10.1109/TKDE.2007.190689

[10] Chaintreau, Augustin, Hui, Pan, Crowcroft, Jon, Diot, Christophe, Gass, Richard,
and Scott, James. “Impact of Human Mobility on Opportunistic Forwarding
Algorithms.” Mobile Computing, IEEE Transactions on 6 (2007).6: 606 –620.

[11] Chen, Wei, Wang, Chi, and Wang, Yajun. “Scalable influence maximization for
prevalent viral marketing in large-scale social networks.” Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’10. New York, NY, USA: ACM, 2010, 1029–1038.

URL http://doi.acm.org/10.1145/1835804.1835934

[12] Chen, Wei, Yuan, Yifei, and Zhang, Li. “Scalable Influence Maximization in Social
Networks under the Linear Threshold Model.” Proceedings of the 2010 IEEE
International Conference on Data Mining. ICDM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, 88–97.

URL http://dx.doi.org/10.1109/ICDM.2010.118

[13] Cichocki, A., Lee, H., Kim, Y-D, and Choi, S. “Non-negative matrix factorization
with α-divergence.” Pattern Recognition Letters (’08).

[14] Cichocki, A. and Zdunek, R. “Multilayer nonnegative matrix factorization using
projected gradient approaches.” Proc. 13th International Conference on Neural
Information Processing (’07).

[15] Cichocki, A., Zdunek, R., and Amari, S.-i. “Nonnegative Matrix and Tensor
Factorization [Lecture Notes].” Signal Processing Magazine, IEEE 25 (2008).1:
142 –145.

[16] Cichocki, Andrzej, Zdunek, Rafal, Phan, Anh Huy, and Amari, Shun-ichi. Nonneg-
ative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation. Wiley Publishing, 2009.

[17] Clauset, Aaron, Newman, M. E. J., and Moore, Cristopher. “Finding community
structure in very large networks.” Physical Review E 70 (2004).6: 066111+.

URL http://dx.doi.org/10.1103/PhysRevE.70.066111

[18] Cover, T. M. and Thomas, J. A. Elements of Information Theory.
Wiley-Interscience, 1991.

[19] Daly, Elizabeth M. and Haahr, Mads. “Social network analysis for routing in
disconnected delay-tolerant MANETs.” Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing. MobiHoc ’07. New York,
NY, USA: ACM, 2007, 32–40.

URL http://doi.acm.org/10.1145/1288107.1288113

174

http://doi.acm.org/10.1145/1835804.1835934
http://dx.doi.org/10.1109/ICDM.2010.118
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://doi.acm.org/10.1145/1288107.1288113

[20] Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. “Comparing community
structure identification.” Journal of Statistical Mechanics: Theory and Experiment
2005 (2005).09: P09008.

[21] Data, Foursquare. “sites.google.com/site/namnpuf/original foursquare.7z.”
Collected data. 2012, 0–0.

[22] dataset, ArXiv. “http://www.cs.cornell.edu/projects/kddcup/datasets.html.” KDD
Cup 2003 (2003).

[23] Delvenne, J-C C., Yaliraki, S. N., and Barahona, M. “Stability of graph
communities across time scales.” Proceedings of the National Academy of
Sciences of the United States of America 107 (2010).29: 12755–12760.

URL http://dx.doi.org/10.1073/pnas.0903215107

[24] Ding, Chris, Li, Tao, and Peng, Wei. “On the equivalence between Non-negative
Matrix Factorization and Probabilistic Latent Semantic Indexing.” Comput. Stat.
Data Anal. 52 (2008).8: 3913–3927.

URL http://dx.doi.org/10.1016/j.csda.2008.01.011

[25] Dinh, Thang N., Xuan, Ying, Thai, My T., Pardalos, Panos M., and Znati,
Taieb. “On new approaches of assessing network vulnerability: hardness and
approximation.” IEEE/ACM Trans. Netw. 20 (2012).2: 609–619.

[26] Dinh, T.N., Xuan, Ying, and Thai, M.T. “Towards social-aware routing in dynamic
communication networks.” Performance Computing and Communications
Conference (IPCCC), 2009 IEEE 28th International. 2009, 161 –168.

[27] Duan, Dongsheng, Li, Yuhua, Jin, Yanan, and Lu, Zhengding. “Community mining
on dynamic weighted directed graphs.” Proceedings of the 1st ACM international
workshop on Complex networks meet information & knowledge management.
CNIKM ’09. New York, NY, USA: ACM, 2009, 11–18.

URL http://doi.acm.org/10.1145/1651274.1651278

[28] E, Weinan, Li, Tiejun, and Vanden-Eijnden, Eric. “Optimal partition and effective
dynamics of complex networks.” Proceedings of the National Academy of
Sciences of the United States of America 105 (2008).23: 7907–7912.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

2786939&tool=pmcentrez&rendertype=abstract

[29] Eagle, Nathan and (Sandy) Pentland, Alex. “Reality mining: sensing complex
social systems.” Personal Ubiquitous Comput. 10 (2006).4: 255–268.

URL http://dx.doi.org/10.1007/s00779-005-0046-3

175

http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1016/j.csda.2008.01.011
http://doi.acm.org/10.1145/1651274.1651278
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2786939&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2786939&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1007/s00779-005-0046-3

[30] Fire, Michael, Tenenboim, Lena, Lesser, Ofrit, Puzis, Rami, Rokach, Lior, and
Elovici, Yuval. “Link Prediction in Social Networks Using Computationally Efficient
Topological Features.” SocialCom/PASSAT. IEEE, 2011, 73–80.

URL http://dblp.uni-trier.de/db/conf/socialcom/socialcom2011.html#

FireTLPRE11

[31] Foobface. “facebook virus turns your computer into a zombie.html,
http://www.pcworld.com/article/155017/.” PC World. 2008, 1.

[32] Fortunato, S. “Community detection in graphs.” Physics Reports 486 (2010).3-5:
75 – 174.

[33] Fortunato, S. and Castellano, C. “Community Structure in Graphs.” eprint arXiv:
0712.2716 (2007).

[34] Fortunato, Santo. “Community detection in graphs.” Physics Reports 486 (2010):
75–174.

[35] Fortunato, Santo and Barthelemy, Marc. “Resolution limit in community detection.”
Proceedings of the National Academy of Sciences 104 (2007).1: 36–41.

URL http://www.pnas.org/content/104/1/36.abstract

[36] Garey, Michael R. and Johnson, David S. Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990.

[37] Girvan, M. and Newman, M. E. J. “Community structure in social and biological
networks.” Proceedings of the National Academy of Sciences 99 (2002).12:
7821–7826.

URL http://dx.doi.org/10.1073/pnas.122653799

[38] ———. “Community structure in social and biological networks.” PNAS 99 (2002).

[39] Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., and Wallace, A.
“Finding Overlapping Communities in Social Networks.” Social Computing
(SocialCom), 2010 IEEE Second International Conference on. 2010, 104 –113.

[40] Gregory, Steve. “Finding overlapping communities in networks by label
propagation.” New Journal of Physics 12 (2010).10: 103018.

[41] Grubesic, T. H., Matisziw, T. C., Murray, A. T., and Snediker, D. “Comparative
approaches for assessing network vulnerability.” Inter. Regional Sci. Review 31
(2008).

[42] Guimera, Roger and Amaral, Luis A. Nunes. “Functional cartography of complex
metabolic networks.” Nature 433 (2005).7028: 895–900.

176

http://dblp.uni-trier.de/db/conf/socialcom/socialcom2011.html#FireTLPRE11
http://dblp.uni-trier.de/db/conf/socialcom/socialcom2011.html#FireTLPRE11
http://www.pnas.org/content/104/1/36.abstract
http://dx.doi.org/10.1073/pnas.122653799

[43] Hoffmann, K H and Salamon, P. “Bounding the lumping error in Markov chain
dynamics.” Applied Mathematics Letters 22 (2009).9: 1471–1475.

URL http://www.google.com/search?client=safari&rls=en-us&q=Bounding+

the+lumping+error+in+Markov+chain+dynamics&ie=UTF-8&oe=UTF-8

[44] Hopcroft, John, Khan, Omar, Kulis, Brian, and Selman, Bart. “Tracking evolving
communities in large linked networks.” Proceedings of the National Academy of
Sciences 101 (2004): 5249–5253.

URL http://www.pnas.org/cgi/content/full/101/suppl_1/5249

[45] Hui, Pan, Crowcroft, J., and Yoneki, E. “BUBBLE Rap: Social-Based Forwarding in
Delay-Tolerant Networks.” Mobile Computing, IEEE Transactions on 10 (2011).11:
1576 –1589.

[46] Hui, Pan and Crowcroft, Jon. “How Small Labels Create Big Improvements.” Per-
vasive Computing and Communications Workshops, 2007. PerCom Workshops
’07. Fifth Annual IEEE International Conference on. 2007, 65 –70.

[47] Hui, Pan, Crowcroft, Jon, and Yoneki, Eiko. “Bubble rap: social-based forwarding
in delay tolerant networks.” Proceedings of the 9th ACM international symposium
on Mobile ad hoc networking and computing. MobiHoc ’08. New York, NY, USA:
ACM, 2008, 241–250.

[48] Hui, Pan, Yoneki, Eiko, Chan, Shu Yan, and Crowcroft, Jon. “Distributed
community detection in delay tolerant networks.” Proceedings of 2nd ACM/IEEE
international workshop on Mobility in the evolving internet architecture. MobiArch
’07. New York, NY, USA: ACM, 2007, 7:1–7:8.

URL http://doi.acm.org/10.1145/1366919.1366929

[49] Jamali, Mohsen, Haffari, Gholamreza, and Ester, Martin. “Modeling the Temporal
Dynamics of Social Rating Networks Using Bidirectional Effects of Social
Relations and Rating Patterns.” Proceedings of the 2010 IEEE International
Conference on Data Mining Workshops. ICDMW ’10. Washington, DC, USA: IEEE
Computer Society, 2010, 344–351.

URL http://dx.doi.org/10.1109/ICDMW.2010.103

[50] Kemeny, John G., Hazleton, Mirkil, J. Laurie, Snell, and Gerald L., Thompson.
“Finite Mathematical Structures.” 1st edition. Englewood Cliffs, N.J.: Prentice-Hall,
Inc (1959).

[51] Kim, Hyang-Ah and Karp, Brad. “Autograph: toward automated, distributed worm
signature detection.” Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13. SSYM’04. Berkeley, CA, USA: USENIX Association,
2004, 19–19.

177

http://www.google.com/search?client=safari&rls=en-us&q=Bounding+the+lumping+error+in+Markov+chain+dynamics&ie=UTF-8&oe=UTF-8
http://www.google.com/search?client=safari&rls=en-us&q=Bounding+the+lumping+error+in+Markov+chain+dynamics&ie=UTF-8&oe=UTF-8
http://www.pnas.org/cgi/content/full/101/suppl_1/5249
http://doi.acm.org/10.1145/1366919.1366929
http://dx.doi.org/10.1109/ICDMW.2010.103

URL http://dl.acm.org/citation.cfm?id=1251375.1251394

[52] Kim, Min-Soo and Han, Jiawei. “A particle-and-density based evolutionary
clustering method for dynamic networks.” Proc. VLDB Endow. 2 (2009).1:
622–633.

URL http://dl.acm.org/citation.cfm?id=1687627.1687698

[53] Koobface. “http://news.cnet.com/koobface-virus-hits-facebook/.” CNET. 2008, 1.

[54] Kovacs, Istvan A., Palotai, Robin, Szalay, Mate S., and Csermely, Peter.
“Community Landscapes: An Integrative Approach to Determine Overlapping
Network Module Hierarchy, Identify Key Nodes and Predict Network Dynamics.”
PLoS ONE 5 (2010).9: e12528.

[55] Lancichinetti, A. and Fortunato, S. “Community detection algorithms: A
comparative analysis.” Phys. Rev. E 80 (2009).5: 056117.

[56] Lancichinetti, A., Fortunato, S., and Jnos, K. “Detecting the overlapping and
hierarchical community structure in complex networks.” New Journal of Physics 11
(2009).3: 033015.

[57] Lancichinetti, Andrea and Fortunato, Santo. “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities.” Phys. Rev. E 80 (2009).1: 016118.

URL http://pre.aps.org/abstract/PRE/v80/i1/e016118

[58] ———. “Community detection algorithms: A comparative analysis.” Phys. Rev. E
80 (2009): 056117.

URL http://link.aps.org/doi/10.1103/PhysRevE.80.056117

[59] ———. “Consensus clustering in complex networks.” Scientific Reports 2 (2012).

URL http://dx.doi.org/10.1038/srep00336

[60] Lancichinetti, Andrea, Radicchi, Filippo, Ramasco, Jos J., and Fortunato, Santo.
“Finding Statistically Significant Communities in Networks.” PLoS ONE 6 (2011).4:
e18961.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0018961

[61] ———. “Finding Statistically Significant Communities in Networks.” PLoS ONE 6
(2011).4: e18961.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0018961

[62] Lazar, A., Abel, D., and Vicsek, T. “Modularity measure of networks with
overlapping communities.” EPL (Europhysics Letters) 90 (2010).1: 18001.

178

http://dl.acm.org/citation.cfm?id=1251375.1251394
http://dl.acm.org/citation.cfm?id=1687627.1687698
http://pre.aps.org/abstract/PRE/v80/i1/e016118
http://link.aps.org/doi/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1038/srep00336
http://dx.doi.org/10.1371%2Fjournal.pone.0018961
http://dx.doi.org/10.1371%2Fjournal.pone.0018961

URL http://stacks.iop.org/0295-5075/90/i=1/a=18001

[63] Lee, C., Reid, F., McDaid, A., and Hurley, N. “Detecting highly overlapping
community structure by greedy clique expansion.” Proceedings of the 4th
Workshop on Social Network Mining and Analysis (2010).

[64] Lee, Daniel D. and Seung, H. Sebastian. “Algorithms for Non-negative Matrix
Factorization.” In NIPS. MIT Press, 2000, 556–562.

[65] Leskovec, Jure, Huttenlocher, Daniel, and Kleinberg, Jon. “Predicting positive and
negative links in online social networks.” Proceedings of the 19th international
conference on World wide web. WWW ’10. New York, NY, USA: ACM, 2010,
641–650.

URL http://doi.acm.org/10.1145/1772690.1772756

[66] Leskovec, Jure, Lang, Kevin J., Dasgupta, Anirban, and Mahoney, Michael W.
“Statistical properties of community structure in large social and information
networks.” Proceedings of the 17th international conference on World Wide Web.
WWW ’08. New York, NY, USA: ACM, 2008, 695–704.

URL http://doi.acm.org/10.1145/1367497.1367591

[67] Li, Tao and Ding, Chris. “The Relationships Among Various Nonnegative Matrix
Factorization Methods for Clustering.” Proceedings of the Sixth International
Conference on Data Mining. ICDM ’06. Washington, DC, USA: IEEE Computer
Society, 2006, 362–371.

URL http://dx.doi.org/10.1109/ICDM.2006.160

[68] Li, Yanhua, Zhang, Zhi-Li, and Bao, Jie. “Mutual or Unrequited Love: Identifying
Stable Clusters in Social Networks with Uni- and Bi-directional Links.” Algorithms
and Models for the Web Graph. eds. Anthony Bonato and Jeannette Janssen, vol.
7323 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.
113–125.

URL http://dx.doi.org/10.1007/978-3-642-30541-2_9

[69] Liben-Nowell, David and Kleinberg, Jon. “The link prediction problem for social
networks.” Proceedings of the twelfth international conference on Information and
knowledge management. CIKM ’03. New York, NY, USA: ACM, 2003, 556–559.

URL http://doi.acm.org/10.1145/956863.956972

[70] Lin, Yu-Ru, Chi, Yun, Zhu, Shenghuo, Sundaram, Hari, and Tseng, Belle L.
“Facetnet: a framework for analyzing communities and their evolutions in dynamic
networks.” Proceedings of the 17th international conference on World Wide Web.
WWW ’08. New York, NY, USA: ACM, 2008, 685–694.

179

http://stacks.iop.org/0295-5075/90/i=1/a=18001
http://doi.acm.org/10.1145/1772690.1772756
http://doi.acm.org/10.1145/1367497.1367591
http://dx.doi.org/10.1109/ICDM.2006.160
http://dx.doi.org/10.1007/978-3-642-30541-2_9
http://doi.acm.org/10.1145/956863.956972

URL http://doi.acm.org/10.1145/1367497.1367590

[71] ———. “Analyzing communities and their evolutions in dynamic social networks.”
ACM Trans. Knowl. Discov. Data 3 (2009).2: 8:1–8:31.

URL http://doi.acm.org/10.1145/1514888.1514891

[72] Lin, Yu-Ru, Sun, Jimeng, Castro, Paul, Konuru, Ravi, Sundaram, Hari, and
Kelliher, Aisling. “MetaFac: community discovery via relational hypergraph
factorization.” Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. KDD ’09. New York, NY, USA: ACM, 2009,
527–536.

URL http://doi.acm.org/10.1145/1557019.1557080

[73] Luxburg, Ulrike. “A tutorial on spectral clustering.” Statistics and Computing 17
(2007).4: 395–416.

URL http://dx.doi.org/10.1007/s11222-007-9033-z

[74] Matisziw, Timothy C. and Murray, Alan T. “Modeling s-t path availability to support
disaster vulnerability assessment of network infrastructure.” Comput. Oper. Res.
36 (2009).1: 16–26.

[75] Newman, M E J. “The Structure and Function of Complex Networks.” SIAM
Review 45 (2003).2: 167–256.

URL http://link.aip.org/link/SIREAD/v45/i2/p167/s1&Agg=doi

[76] Newman, M. E. J. “Fast algorithm for detecting community structure in networks.”
Phys. Rev. E 69 (2004): 066133.

URL http://link.aps.org/doi/10.1103/PhysRevE.69.066133

[77] ———. “Finding community structure in networks using the eigenvectors of
matrices.” Physical Review E 74 (2006).3: 036104.

[78] Newman, M. E. J. and Girvan, M. “Finding and evaluating community structure in
networks.” Physical Review E 69 (2004).026113.

[79] Newman, M E J and Leicht, E A. “Mixture models and exploratory analysis in
networks.” Proceedings of the National Academy of Sciences of the United States
of America 104 (2007).23: 9564–9569.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1887592&tool=pmcentrez&rendertype=abstract

[80] Nguyen, Nam P., Dinh, Thang N., Tokala, Sindhura, and Thai, My T. “Overlapping
communities in dynamic networks: their detection and mobile applications.”

180

http://doi.acm.org/10.1145/1367497.1367590
http://doi.acm.org/10.1145/1514888.1514891
http://doi.acm.org/10.1145/1557019.1557080
http://dx.doi.org/10.1007/s11222-007-9033-z
http://link.aip.org/link/SIREAD/v45/i2/p167/s1&Agg=doi
http://link.aps.org/doi/10.1103/PhysRevE.69.066133
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1887592&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1887592&tool=pmcentrez&rendertype=abstract

Proceedings of the 17th annual international conference on Mobile computing and
networking. MobiCom ’11. New York, NY, USA: ACM, 2011, 85–96.

URL http://doi.acm.org/10.1145/2030613.2030624

[81] Nguyen, N.P., Dinh, T.N., Xuan, Ying, and Thai, M.T. “Adaptive algorithms for
detecting community structure in dynamic social networks.” INFOCOM, 2011
Proceedings IEEE. 2011, 2282 –2290.

[82] Nguyen, N.P., Xuan, Ying, and Thai, M.T. “A novel method for worm containment
on dynamic social networks.” MILITARY COMMUNICATIONS CONFERENCE,
2010 - MILCOM 2010. 2010, 2180 –2185.

[83] Nicosia, V., Mangioni, G., Carchiolo, V., and Malgeri, M. “Extending the definition
of modularity to directed graphs with overlapping communities.” J. Stat. Mech.:
Theory and Experiment 2009 (2009).03: P03024.

[84] Palla, G., Derenyi, I., Farkas1, I., and Vicsek, T. “Uncovering the overlapping
community structure of complex networks in nature and society.” Nature 435
(2005).10.

[85] Palla, G., Pollner, P., Barabasi, A., and Vicsek, T. “Social Group Dynamics in
Networks.” Adaptive Networks (2009).

[86] Palla, Gergely, Barabasi, Albert-Laszlo, and Vicsek, Tamas. “Quantifying social
group evolution.” Nature 446 (2007).7136: 664–667.

URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=

pubmed\&dopt=Abstract\&list_uids=17410175

[87] Panzarasa, P., Opsahl, T., and Carley, K. M. “Patterns and dynamics of users’
behavior and interaction: Network analysis of an online community.” J. American
Soc. of Info. Sci. Tech. 60(5) (’09).

[88] Peters, Karsten, Buzna, Lubos, and Helbing, Dirk. “Modelling of cascading
effects and efficient response to disaster spreading in complex networks.” IJCIS 4
(2008).1/2: 46–62.

URL http://dblp.uni-trier.de/db/journals/ijcritis/ijcritis4.html#

PetersBH08

[89] Piccardi, Carlo. “Finding and Testing Network Communities by Lumped Markov
Chains.” PLoS ONE 6 (2011).11: e27028.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0027028

[90] Psorakis, I., Roberts, S., and Ebden, M. “Overlapping community detection using
Bayesian non-negative matrix factorization.” Phys. Rev. E. 83 (11).

181

http://doi.acm.org/10.1145/2030613.2030624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=pubmed\&dopt=Abstract\&list_uids=17410175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=pubmed\&dopt=Abstract\&list_uids=17410175
http://dblp.uni-trier.de/db/journals/ijcritis/ijcritis4.html#PetersBH08
http://dblp.uni-trier.de/db/journals/ijcritis/ijcritis4.html#PetersBH08
http://dx.doi.org/10.1371%2Fjournal.pone.0027028

[91] Radicchi, Filippo, Castellano, Claudio, Cecconi, Federico, Loreto, Vittorio, and
Parisi, Domenico. “Defining and identifying communities in networks.” Proceed-
ings of the National Academy of Sciences of the United States of America 101
(2004).9: 2658–2663.

URL http://www.pnas.org/content/101/9/2658.abstract

[92] Reichardt, Joerg and Bornholdt, Stefan. “Detecting fuzzy community structures
in complex networks with a Potts model.” Physical Review Letters 93 (2004).21:
218701.

URL http://arxiv.org/abs/cond-mat/0402349

[93] Rosvall, Martin and Bergstrom, Carl T. “Mapping Change in Large Networks.”
PLoS ONE 5 (2010).1: e8694.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0008694

[94] Scott, James, Gass, Richard, Crowcroft, Jon, Hui, Pan, Diot,
Christophe, and Chaintreau, Augustin. “CRAWDAD trace
cambridge/haggle/imote/infocom2006 (v. 2009-05-29).” Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle
/imote/infocom2006, 2009.

[95] Scripps, Jerry, Tan, Pang-Ning, and Esfahanian, Abdol-Hossein. “Node roles
and community structure in networks.” Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 workshop on Web mining and social network analysis.
WebKDD/SNA-KDD ’07. New York, NY, USA: ACM, 2007, 26–35.

[96] Sean P., Meyn and Richard L., Tweedie. “Markov Chains and Stochastic Stability.”
2nd edition. Cambridge University Press (2009).

[97] Sekar, Vyas, Xie, Yinglian, Reiter, Michael K., and Zhang, Hui. “A Multi-Resolution
Approach forWorm Detection and Containment.” Proceedings of the International
Conference on Dependable Systems and Networks. DSN ’06. Washington, DC,
USA: IEEE Computer Society, 2006, 189–198.

URL http://dx.doi.org/10.1109/DSN.2006.6

[98] Sun, Jimeng, Faloutsos, Christos, Papadimitriou, Spiros, and Yu, Philip S.
“GraphScope: parameter-free mining of large time-evolving graphs.” Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining. KDD ’07. New York, NY, USA: ACM, 2007, 687–696.

URL http://doi.acm.org/10.1145/1281192.1281266

[99] Tantipathananandh, Chayant and Berger-Wolf, Tanya. “Constant-factor
approximation algorithms for identifying dynamic communities.” Proceedings

182

http://www.pnas.org/content/101/9/2658.abstract
http://arxiv.org/abs/cond-mat/0402349
http://dx.doi.org/10.1371%2Fjournal.pone.0008694
http://dx.doi.org/10.1109/DSN.2006.6
http://doi.acm.org/10.1145/1281192.1281266

of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining. KDD ’09. New York, NY, USA: ACM, 2009, 827–836.

URL http://doi.acm.org/10.1145/1557019.1557110

[100] Viswanath, Bimal, Mislove, Alan, Cha, Meeyoung, and Gummadi, Krishna P.
“On the evolution of user interaction in Facebook.” Proceedings of the 2nd ACM
workshop on Online social networks. WOSN ’09. New York, NY, USA: ACM, 2009,
37–42.

URL http://doi.acm.org/10.1145/1592665.1592675

[101] Šı́ma, Jiřı́ and Schaeffer, Satu Elisa. “On the NP-Completeness of some graph
cluster measures.” Proceedings of the 32nd conference on Current Trends in
Theory and Practice of Computer Science. SOFSEM’06. Berlin, Heidelberg:
Springer-Verlag, 2006, 530–537.

URL http://dx.doi.org/10.1007/11611257_51

[102] Wang, Fei, Li, Tao, Wang, Xin, Zhu, Shenghuo, and Ding, Chris. “Community
discovery using nonnegative matrix factorization.” Data Min. Knowl. Discov. 22
(2011).3: 493–521.

URL http://dx.doi.org/10.1007/s10618-010-0181-y

[103] ———. “Community discovery using nonnegative matrix factorization.” Data Min.
Knowl. Discov. 22 (2011).3: 493–521.

URL http://dx.doi.org/10.1007/s10618-010-0181-y

[104] Wang, Pu, González, Marta C., Hidalgo, Cesar A., and Barabasi, Albert-Laszlo.
“Understanding the Spreading Patterns of Mobile Phone Viruses.” Science 324
(2009).5930: 1071–1076.

URL http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200904-02_

ScienceExpr-PhoneViruses/200904-02_ScienceExpr-PhoneViruses

[105] Wang, Yang, Di, Zengru, and Fan, Ying. “Identifying and Characterizing Nodes
Important to Community Structure Using the Spectrum of the Graph.” PLoS ONE
6 (2011).11: e27418.

[106] Weaver, Nicholas, Staniford, Stuart, and Paxson, Vern. “Very fast containment
of scanning worms.” Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13. SSYM’04. Berkeley, CA, USA: USENIX Association,
2004, 3–3.

URL http://dl.acm.org/citation.cfm?id=1251375.1251378

[107] Ye, Zhenqing, Hu, Songnian, and Yu, Jun. “Adaptive clustering algorithm for
community detection in complex networks.” Phys. Rev. E 78 (2008): 046115.

183

http://doi.acm.org/10.1145/1557019.1557110
http://doi.acm.org/10.1145/1592665.1592675
http://dx.doi.org/10.1007/11611257_51
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1007/s10618-010-0181-y
http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200904-02_ScienceExpr-PhoneViruses/200904-02_ScienceExpr-PhoneViruses
http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200904-02_ScienceExpr-PhoneViruses/200904-02_ScienceExpr-PhoneViruses
http://dl.acm.org/citation.cfm?id=1251375.1251378

URL http://link.aps.org/doi/10.1103/PhysRevE.78.046115

[108] Zdunek, Rafal and Cichocki, Andrzej. “Non-negative matrix factorization with
quasi-newton optimization.” Proceedings of the 8th international conference
on Artificial Intelligence and Soft Computing. ICAISC’06. Berlin, Heidelberg:
Springer-Verlag, 2006, 870–879.

URL http://dx.doi.org/10.1007/11785231_91

[109] Zhang, Yuzhou, Wang, Jianyong, Wang, Yi, and Zhou, Lizhu. “Parallel community
detection on large networks with propinquity dynamics.” Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’09. New York, NY, USA: ACM, 2009, 997–1006.

URL http://doi.acm.org/10.1145/1557019.1557127

[110] Zhu, Zhichao, Cao, Guohong, Zhu, Sencun, Ranjan, S., and Nucci, A. “A Social
Network Based Patching Scheme for Worm Containment in Cellular Networks.”
INFOCOM 2009, IEEE. 2009, 1476 –1484.

184

http://link.aps.org/doi/10.1103/PhysRevE.78.046115
http://dx.doi.org/10.1007/11785231_91
http://doi.acm.org/10.1145/1557019.1557127

BIOGRAPHICAL SKETCH

Nam P. Nguyen is currently at his fourth year PhD student in Department of

Computer and Information Science and Engineering (CISE), University of Florida

and a member of Optima Network Science Lab under the guidance of Professor My T.

Thai. Prior to his Ph.D. study, Nam received my B.S. and M.S. degrees both in applied

mathematics from Vietnam National University (2007) and Ohio University (2009).

His research interests include dynamic complex network problems, such as

non-overlapping and overlapping network community structure, worm and virus

containment, social networks; cascading failures; combinatorial optimization and

approximation algorithms. In particular, his current research focuses on designing

adaptive algorithms for effectively identify communities in dynamic networks such as

mobile or online social networks, as well as their applications in different aspects of

networking problems. In addition, he is also interested in effective methods to stop the

propagation of virus, worm and misinformation spread on large scale dynamic networks,

in terms of both approximation and social-based algorithms.

During his Ph.D. study, Nam has published many papers in top-tier conferences and

journals including INFOCOM, MOBICOM, WEBSCI and IEEE Transaction on Mobile

Computing, IEEE Transaction on Networking, etc. In 2011, Nam spent his summer as

an intern in CCS-3 division, Los Alamos National Laboratories, where he conducted

research and published a paper on containing the spread of misinformation in large

scale online social networks. Nam also the recipient of many awards such as the

Student Travel Grants of MILCOM’10, MOBICOM’11 and SIGWEB’12 conferences,

Travel Grant of The College of the Engineering in 2011, University of Florida.

185

COMPLEX NETWORKS UNDER ATTACKS:
VULNERABILITY ASSESSMENT AND OPTIMIZATION

By

THANG N. DINH

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

c⃝ 2013 Thang N. Dinh

2

I dedicate this disseration to my parents, Kien Duong and Thuy Dinh, and to my wife,

Phuong-Thao, and my daughter, Linh-Thu.

3

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help, support, guidance

and efforts of so many people in so many ways. Firstly, I would like to thank my mentor

Dr. My T. Thai for her invaluable support throughout my Ph.D program. I would always

treasure her infectious passion, preciseness, profound knowledge, and valuable advice

on becoming a good scientist and, more importantly, a better person.

I am also very grateful for my committee members, Dr. Ahmed Helmy, Dr. Tamer

Kahveci, Dr. Panagote Pardalos, and Dr. Sartaj Sahni for the support theyve lent me

over all these years as well as their valuable support for my future career. I would like

also to thank Dr. Meera Sitharam for helping me with my questions and many insightful

discussions. I would like to acknowledge and thank my friends Ravi Tiwari, Incheol Shin,

Ying Xuan, Nam Nguyen, Dzung Nguyen, Yilin Shen, Ferhat Ay for their help in research

and all the fun we had together. Finally I would like to take the opportunity to thank all

my teachers who has equipped me with the requisite knowledge and skills. My research

was partially supported by the DTRA YIP grant number HDTRA1-09-1-0061 and the

NSF CAREER Award number 0953284.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 12

1.1 Connectivity-based Vulnerability Assessment 13
1.1.1 Motivation . 13
1.1.2 β-disruptor Problems . 14
1.1.3 Related Work . 15
1.1.4 Contributions . 16

1.2 Cascading Failures in Critical Infrastructures 17
1.2.1 Problem Definitions . 18
1.2.2 Related Work. 20
1.2.3 Contributions . 21

2 MULTIPLE LINK ATTACKS . 22

2.1 Complexity of Finding Disruptor . 23
2.1.1 NP-completeness of Edge Disruptor 24
2.1.2 Hardness of Approximation: Vertex Disruptor 27

2.2 Bicriteria Approximation Algorithm for β-edge Disruptor 28
2.2.1 Balanced Tree-Decomposition . 28
2.2.2 Dynamic Programming Algorithm on the Decomposition Tree . . . 29

2.3 Bounds on the Size of Edge Disruptor . 35
2.3.1 Laplacian Matrix and and Its Eigenvalues 37
2.3.2 Spectral Lower-bound for Link Assessment 39

2.3.2.1 Dynamic Programming Method 40
2.3.2.2 Lagrange Multipliers Method 43
2.3.2.3 Time and quality trade-off 46

2.3.3 Experimental Results . 48
2.3.3.1 Synthetic Networks . 48
2.3.3.2 Real-world Datasets . 49

3 MULTIPLE NODE ATTACKS . 51

3.1 Bicriteria Approximation Algorithm for β-vertex Disruptor 51
3.2 Connection between Edge Disruptor and Vertex Disruptor 55
3.3 Branch-and-cut Algorithm . 57

5

3.3.1 Mixed Integer Programming Formulation 58
3.3.2 Sparse Metric Technique . 59
3.3.3 Cutting Planes . 63

3.3.3.1 Vertex-Connectivity and Invalid Inequalities 63
3.3.3.2 Separation Procedure for VC Inequalities 64

3.3.4 Primal Heuristic . 65
3.4 Experimental study . 66

3.4.1 Performance of the Branch-and-cut Algorithm 69
3.4.2 Case study: Western States Power Grid 70

4 JOINT LINK AND NODE ATTACKS . 72

4.1 Mixed Removal of Nodes and Links . 74
4.1.1 Mixed Integer Linear Programming 75
4.1.2 Relation between edge costs and vertex costs 75

4.2 Bicriteria Approximation Algorithm for Joint Link and Node Attacks 76
4.2.1 Algorithm Description . 76
4.2.2 Analysis of Approximation Ratio . 79

4.3 Hybrid Meta-heuristic . 83
4.3.1 Spectral Bisection . 83
4.3.2 Hybrid Meta-heuristic . 85

4.4 Experimental Studies . 88
4.4.1 Experiment Setups . 88

4.4.1.1 Datasets . 88
4.4.1.2 Removal costs schemes 89
4.4.1.3 Finding the optimal disruptor 89
4.4.1.4 Solving for the second eigenvector 89
4.4.1.5 Implementation details 91

4.4.2 Comparison of the three disruptor types 91
4.4.3 Synthesis Networks of Different Topologies 93
4.4.4 AS Relationships Networks . 95

5 VULNERABILITY ASSESSMENT IN PROBABILISTIC NETWORKS 97

5.1 Probablilistic Networks . 98
5.1.1 Probabilistic Network Model . 98
5.1.2 Expected Pairwise Connectivity . 98
5.1.3 Vulnerability Assessment . 99

5.2 Estimation of Connectivity in Probabilistic Networks 99
5.2.1 #P-Completeness . 99
5.2.2 Monte-Carlo Methods to Approximate EPC 101
5.2.3 Fully Polynomial Time Approximation Scheme 103

5.2.3.1 Component Sampling Algorithm 103
5.3 Vulnerability Assessment using EPC . 106

5.3.1 Approximating via the Expectation Graph 109
5.3.2 Sample Average Approximation (SAA) Method 112

6

5.3.3 Local Search Heuristic . 114

6 CASCADING-FAILURES IN NETWOKRS . 117

6.1 Seeding Cost of Massive Outbreak . 117
6.1.1 Power-law Network Model. 117
6.1.2 Prohibitive Seeding Costs . 118

6.2 Algorithm to Identify the Minimum Outbreak Seeding 121
6.3 Hardness of the CFM Problem . 125

6.3.1 Feige’s Reduction for Set Cover . 125
6.3.2 One-hop CFM . 127
6.3.3 Multiple-hop CFM . 132

6.4 Empirical Study . 134
6.4.1 Comparing to Optimal Seeding . 134
6.4.2 Large Social Networks . 137
6.4.3 Solution Quality in Large Social Networks 137
6.4.4 Scalability . 139
6.4.5 Influence factor . 139

7 CONCLUSION . 140

REFERENCES . 142

BIOGRAPHICAL SKETCH . 149

7

LIST OF TABLES

Table page

2-1 Sizes of the investigated networks and the corresponding running time to compute
the lower-bound . 49

3-1 Size of disruptor on Erdos-Rényi networks at 60% connectivity. 67

3-2 Size of disruptor on Barabási–Albert networks at 60% connectivity. 67

3-3 Comparisons of IPvd and MIPvd on power-law networks 69

6-1 Sizes of the investigated networks . 137

8

LIST OF FIGURES

Figure page

2-1 After the “central” vertex (in black) with maximum out-going degree is removed,
network (A) is still strongly connected while (B) is fragmented; however in fact,
only removing one vertex (in grey) is enough to destroy network (A). 23

2-2 Construction of H(VH , EH) from G(V,E) . 25

2-3 A part of a decomposition tree. F = {t2, t3, t5, t6} is a G-partitionable. The
corresponding partition {V (t2), V (t3), V (t5), V (t6)} in G can be obtained by
using cuts at ancestors of nodes in F i.e. t0, t1, t4. 31

2-4 Minimum cost and lower-bounds for β-disruptor on the synthesis networks . . . 47

2-5 Running time on the synthesis networks . 47

2-6 Lower bounds on the number of link-attack for real networks found with the
LMB algorithm. 50

3-1 Conversion from the node version in a directed graph (a) into the edge version
in a directed graph (b) . 55

3-2 Disruptors found by different methods in the Western States Power Grid of
the United States at different levels of disruption. 67

3-3 Disruptors found by different methods in the Western States Power Grid of
the United States at different levels of disruption. 68

4-1 A) After removing nodes 1 and 2 with highest degree, the network remains
connected and the pairwise connectivity reduces only 35%. As shown in a.,
the solution that minimizes the connectivity (nodes 3 and 7) effectively breaks
the network into two parts, disrupting 67% connectivity. B) Minimum cost solutions
to reduce 50% of the connectivity assuming links have cost 2 and nodes have
cost 3 a. node only & b. link only c. joint nodes & links. The minimum cost
is 6 if attacking only nodes or only links, and is 5 if both links and nodes are
targeted. Thus, it is insufficient to study node and link attacks separately. . . . 72

4-2 High interdependence of networks’ elements. Removing the marked link (u, v)
breaks the (strongly) connected network into four components. Notice that
the red and green components are separated from the others, even when none
of the incoming links to or outgoing links from those components are removed. 80

4-3 The normalized optimal costs of three different disruptor types on the US Backbone
network. 88

4-4 Costs of disruptor algorithms on the synthesis networks 90

4-5 Running time of disruptor algorithms on the synthesis networks 91

9

4-6 Oregon AS network . 94

4-7 CAIDA AS network . 95

6-1 The influence propagation in the network. 119

6-2 Reduction from SCB to CFM when d = 1 . 128

6-3 The transmitter gadget. 132

6-4 Gap-reduction from one-hop CFM to d-hop CFM. 133

6-5 Seeding size (in percent) on Erdos’s Collaboration network. VirAds produces
close to the optimal seeding in only fractions of a second (in comparison to 2
days running time of the IP(optimal)) . 134

6-6 Seeding size when the number of propagation hop d varies (ρ = 0.3). VirAds
consistently has the best performance. 136

6-7 Running time when the number of propagation hop d varies (ρ = 0.3). Even
for the largest network of 110 million edges, VirAds takes less than 12 minutes. 136

6-8 Degree distribution of studied networks . 137

6-9 Seeding size at different influence factors ρ (the maximum number of propagation
hops is d = 4). 138

10

Abstract of Proposal Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

COMPLEX NETWORKS UNDER ATTACKS:
VULNERABILITY ASSESSMENT AND OPTIMIZATION

By

Thang N. Dinh

Mar 2013

Chair: Professor My T. Thai
Major: Computer Engineering

Complex network systems are extremely vulnerable to attacks. In the presence of

uncertainty, assessing network vulnerability before potential malicious attacks is vital for

network planning and risk management.

In this dissertation, we apply optimization theory and approximation techniques

to address the following fundamental questions: How do we quantitatively measure

the vulnerability degree of the network? How to identify critical infrastructures in the

network in the context of both individual failures and/or cascading failures that spread

from one node to another across the network structure? The dissertation provides

several new theoretical frameworks and approximation algorithms to characterize the

network vulnerability and critical infrastructures, which advances the understanding

of network vulnerability. The dissertation tackles the above questions by crossing

and contributing new techniques to several research areas such as graph theory,

approximation algorithms, mathematical programming, and computational complexity.

This research can potentially impact many applications that benefit from networks

such as the Internet, smart grids, and transportation networks where vulnerability is an

important characteristic.

11

CHAPTER 1
INTRODUCTION

Assessing network vulnerability before potential disruptive events such as natural

disasters or malicious attacks is vital for network planning and risk management. It

enables us to seek and safeguard against most destructive scenarios in which the

overall network connectivity falls dramatically.

There have been numerous efforts on proposing evaluation measures of the

network vulnerability, as summarized in [46]. On one hand, several global graph

measures, such as Cyclomatic number, Maximum network circuits, Alpha index,

and Beta index, which investigate basic graph properties, i.e., number of vertices,

edges and pairwise shortest paths, are adopted to evaluate the network vulnerability.

However, these global measures can neither be rigorously mapped to the over

network connectivity, nor reveal the set of most critical vertices and edges, thus are

not suitable to assess the network vulnerability in terms of connectivity. On the other

hand, researchers focused on local nodal centrality [18], such as degree centrality,

betweenness centrality and closeness centrality, in order to differentiate the critical

vertices from the others, and further evaluate the network by quantifying such vertices.

Unfortunately, being unable to cast these local properties to global network connectivity,

these measures fail to indicate accurate vulnerabilities and cannot reveal the global

damage done on the network under attacks.

To this end, in the first part of this proposal, we investigate a measure called

pairwise connectivity and formulate this vulnerability assessment problem as a new

graph-theoretical optimization problems. The pairwise connectivity is the sum of every

vertex pair connectivity, which is quantified as 1 if they are (strongly) connected and 0 if

not. Our new optimization problems, called β-vertex disruptor and β-edge disruptor, aim

to discover the set of critical node/edges, whose removal results in the sharpest decline

of the pairwise connectivity. With respect to a level of connectivity disruption, the more

12

vertices/edges required to be removed, the less vulnerable the network is; conversely,

the fewer vertices/edges needed to removed, the easier this network is to be destroyed.

The β-disruptor problems are defined in section 1.1.

The second part of this proposal focuses on assessing network vulnerability against

cascading-failures, that spread among nodes of a power grid or communication network

during a widespread outage, among financial institutions during a financial crisis, or

through a human population during the outbreak of an epidemic disease. We develop

a new measurement for cascading-resilience in networks subject to such cascading

failures. The cascading-resilience (a.k.a. network vulnerability) is measured as the min-

imum size of a set of nodes that can trigger an outbreak of failure to the whole network

in a short amount of time. Thus, we formulate the measuring cascading-resilience as an

optimization problem, called cost-effective massive outbreak problem (CFM).

Since all formulated optimization are shown to be NP-complete, efficient algorithms

to find the exact solutions for the formulated problems are unlikely to exist. Thus, we

focus on designing algorithms that can provide guarantee on their performances, which

are known as approximation algorithms. Furthermore, we also devote one part of the

proposal to design scalable algorithms for large-scale networks, which have hundreds of

millions links. Those algorithms are essential to benefit the available of big data.

1.1 Connectivity-based Vulnerability Assessment

1.1.1 Motivation

Connectivity plays a vital role in network performance and is fundamental to

vulnerability assessment. Potential disruptive events, such as natural disasters or

malicious attacks, which always destroy a set of interacting elements or connections,

can dramatically compromise the connectivity and result in considerate decline of the

network QoS, or even breakdown the whole network [24, 26, 46, 62, 63, 68]. Of this

concern, pre-active evaluation over the network vulnerability with respect to connectivity,

in order to defense such potential disruptions, is quite essential and beneficial to the

13

design and maintenance of any infrastructure networks, for example, communication,

commercial, and social networks.

1.1.2 β-disruptor Problems

Besides the homogeneous network model consisting of uniform nodes and

bidirectional links, the heterogeneous network model, where various interacting

elements of different kinds are connected through unidirectional links with non-uniform

expenses, finds numerous applications nowadays [53, 58, 72], but as well, exhibits

multiple difficulties for optimization and maintenance. In the light of this, we abstract our

general network model as a directed graph G(V,E), where V refers to a set of nodes

and E refers to a set of unidirectional links. The expense of each directed edge (u, v)

between vertex u and v is quantified as a nonnegative value c(u, v), for all the m = |E|

links among n = |V | nodes.

As mentioned above, our evaluation over the network vulnerability is based on

the value of overall pairwise connectivity in the abstracted graph, which is defined as

follows: given any vertex pair (u, v) ∈ V × V in the graph, we say that they are connected

iff there exists paths between u and v in both directions in G, i.e., strongly connected to

each other. The pairwise connectivity p(u, v) is quantified as 1 if this pair is connected,

0 otherwise. Since the main purpose of network lies in connecting all the interacting

elements, we study on the aggregate pairwise connectivity between all pairs, that is, the

sum of quantified pairwise connectivity, which we denote as P(G) =
∑

u,v∈V×V p(u, v) for

graph G. Apparently P(G) is maximized at
(
n
2

)
when G is a strongly connected graph.

Based on this, we have:

Definition 1. (Edge disruptor) Given 0 ≤ β ≤ 1, a subset S ⊂ E in G = (V,E) is

a β-edge disruptor if the overall pairwise connectivity in the G[E \ S], obtained by

removing S from G, is no more than β
(
n
2

)
. By minimizing the cost of such edges in S,

we have the β-edge disruptor problem, i.e., find a minimized β-edge disruptor in a

strongly connected graph G(V,E).

14

Recall that G is strongly connected iff for every vertex v in G, there is a directed

path from v to all other vertices. A subgraph of G is called a strongly connected compo-

nent (SCC) iff it is a maximal subgraph of G with all vertex pairs u, v within it connected

by directed paths in both directions. Assume that a β-edge disruptor disrupts the

connectivity in G(V,E) by separating it into several smaller SCCs, say Ci for i = 1 . . . l

i.e. V =
l⊎

i=1

Ci. We have:

P(G) =
l∑

i=1

(
|Ci|
2

)
=

1

2

(
l∑

i=1

|Ci|2 − |V |

)

=
1

2

(
n2

l
− n

)
+
l

2
V ar(C)

where V ar(C) =
1

l

l∑
i=1

(|Ci| − C)2 =
1

l

l∑
i=1

(|Ci| −
n

l
)2. Therefore, the two key factors

affecting pairwise connectivity are the number of SCCs and the variance of their sizes.

They provide us an alternative measure for evaluating the structural balance and

fragmentation of the network.

Similarly, we define β-vertex disruptor and its corresponding optimization problem:

β-vertex disruptor problem: Given a strongly connected graph G(V,E) and a

fixed number 0 ≤ β ≤ 1, find a subset S ⊆ V with the minimum size such that the total

pairwise connectivity in G[V \S], obtained by removing S from G, is no more than β
(
n
2

)
.

Such a set S is called β-vertex disruptor.

1.1.3 Related Work

The classic vulnerability measurements are mainly based on the centrality of

each vertex in the graph, which consist of degree centrality, betweenness, closeness,

and eigenvector centrality [18]. However, these measures fail to indicate accurate

vulnerabilities and cannot reveal the global damage done on the network under attacks.

On the other hand, the global graph measures are mainly functions of graph

properties, e.g., the number of vertices/edges, operational O-D pairs, operational

15

paths, minimum shortest paths [24, 46, 62]. However, some of these attributes cannot

be calculated in polynomial-time for dense networks. In essence, these functions do

not reveal the set of most critical vertices and edges, thus are not suitable to assess

the network vulnerability in terms of connectivity. Several similar concepts with our

pairwise connectivity have been recently investigated in [10, 17, 73], where the terms

average pairwise connectivity, pairwise connected ratio and cohesion were used.

However, none of them were able to formulate the calculation of this measure as

an optimization problem and provide the hardness proof along with performance

guaranteed approximation algorithms. Moreover, the problem β-disruptor studied in

this paper take into account the roles of all edges and vertices in the global network

connectivity, thus provides a more essential research and thorough analysis over the

underlying vulnerability framework established.

As a subproblem of this vulnerability assessment problem, Critical Vertex/Edge,

which are defined as the minimum number of vertices/edges whose removal disconnects

the graph, are also studied and solved using extensive heuristics, however, without

performance guarantee. Some work of this kind in the context of wireless network

are [44][47][48], nevertheless, these works consider only whether or not the graph is

disconnected and ignore how fragmental the graph becomes. They are insufficient to

evaluate the graph vulnerability.

Bissias et al. [14, 15] study the problem of bounding the damage under link attacks.

However, the provided methods either require solving costly semidefinite programming

problem [15] or involving weak bounds due to the presence of partitions with negative

sizes [14].

1.1.4 Contributions

Our contributions for the vulnerability assessment research are as follows:

• Providing a novel underlying framework toward the vulnerability assessment
by investigating the pairwise connectivity and formulating it as an optimization

16

problem β-disruptor on general graphs, which consists of two versions β-vertex
disruptor and β-edge disruptor ;

• Proving the NP-completeness of the two problems above and further proving that
no PTAS exists for β-vertex disruptor ;

• Presenting an O(log
3
2 n) pseudo-approximation algorithm for β-vertex dis-

ruptor, and an O(log n log log n) pseudo-approximation algorithm for β-edge
disruptor. These solutions can be applied to both homogeneous networks
and heterogeneous networks with unidirectional links and non-uniform nodal
properties.

• We present a spectral lower-bound method for the link vulnerability assessment
problem, β-edge disruptor. The new lower-bound method is useful in both
comparing the vulnerability of different networks and providing guarantees for
other heuristics assessment methods.

• In Chapter 4, we present an O(
√
log n) bicriteria approximation algorithm for the

β-disruptor problem. Since β-vertex disruptor is a special case of β-disruptor,
the algorithm implies an O(

√
log n) bicriteria approximation algorithm for β-vertex

disruptor, which improve the best result for β-vertex disruptor, the O(log n log log n)
bicriteria approximation algorithm.

• In probabilistic networks, We first show that computing expected pairwise
connectivity is #P-complete. In addition, we develop a Fully Polynomial Time
Approximation Scheme (FPRAS) to estimate network connectivity with an arbitrary
precision.

1.2 Cascading Failures in Critical Infrastructures

Malicious attacks can cause failures to spread over the network. Such cascading

processes can be found in contagious failures that spread among nodes of a power grid

or communication network during a widespread outage, among financial institutions

during a financial crisis, or through a human population during the outbreak of an

epidemic disease. During the cascade process, nodes are assigned states which

change because of the influence of their neighbors. For example, an infected node can

pass the infection to its contacts in the network, and the infection could then be passed

to more and more nodes. We focus on the case where nodes change their state only

when a certain fraction of their neighbors exert influence (see e.g. [21, 81, 82]).

17

We develop a new measurement for cascading-resilience in networks subject

to such cascading failures. The cascading-resilience (a.k.a. network vulnerability) is

measured as the minimum size of a set of nodes that can trigger an outbreak of failure

to the whole network in a short amount of time. Thus, we formulate the measuring

cascading-resilience as an optimization problem, called cost-effective massive outbreak

problem (CFM). The key difference in comparison with other works on cascading failure

and diffusion process is that we consider the time-aspect of the outbreak. We limit the

propagation of failure to within d hops from the failure sources.

Both analytical analysis based on scale-free network theory and numerical analysis

demonstrate that the massive outbreak might involve costly seeding. To minimize

the seeding cost, we provide mathematical programming to find optimal seeding for

medium-size networks and propose VirAds, an efficient algorithm, to tackle the problem

on large-scale networks. VirAds guarantees a relative error bound of O(1) from the

optimal solutions in power-law networks and outperforms the greedy heuristics which

realizes on the degree centrality. Moreover, we also show that, in general, approximating

the optimal seeding within a ratio better than O(log n) is unlikely possible.

1.2.1 Problem Definitions

We are given a network modeled as an undirected graph G = (V,E) where

the vertices in V represent users in the network and the edges in E represent social

links between users. We use n and m to denote the number of vertices and edges,

respectively. The set of neighbors of a vertex v ∈ V is denoted by N(v) and we denote

by d(v) = |N(v)| the degree of node v.

We continue with specifying the diffusion model that governs the process of

cascading failures. Existing diffusion models can be categorized into two main groups

[49]:

• Threshold model. Each node v in the network has a threshold tv ∈ [0, 1], typically
drawn from some probability distribution. Each connection (u, v) between nodes u

18

and v is assigned a weight w(u, v). For a node v, let F (v) be the set of neighbors
of v that are already influenced. Then v is influenced if tv ≤

∑
u∈F (v)w(u, v).

• Cascade model. Whenever a node u is influenced, it is given a single chance to
activate each of its neighbor v with a given probability p(u, v).

Most papers on cascading processes assume that the probabilities p(u, v) or weights

w(u, v) and thresholds tv are given as a part of the input. However, they are generally

not available and inferring those probabilities and thresholds has remained a non trivial

problem [43]. Therefore, in addition to the bounded propagation hop, we use a simplified

variation of the linear threshold model in which a vertex is activated if a fraction ρ of its

neighbors are active as follows.

Locally Bounded Diffusion Model. Let R0 ⊂ V be the subset of vertices selected

to initiate the influence propagation, which we call the seeding. We also call a vertex

v ∈ R0 a seed. The propagation process happens in round, with all vertices in R0 are

influenced (thus active in adopting the behavior) at round t = 0. At a particular round

t ≥ 0, each vertex is either active (adopted the behavior) or inactive and each vertex’s

tendency to become active increases when more of its neighbors become active. If an

inactive vertex u has more than ⌈ρ d(u)⌉ active neighbors at round t, then it becomes

active at round t + 1, where ρ is the influence factor as discussed later. The process

goes on for a maximum number of d rounds and a vertex once becomes active will

remain active until the end. We say an initial set R0 of vertices to be a d-seeding if R0

can make all vertices in the networks active within at most d rounds.

The influence factor 0 < ρ < 1 is a constant that decides how widely and quickly the

influence propagates through the network. Influence factor ρ reflects real-world factors

such as how easy to share the content with others, or some intrinsic benefit for those

who initially adopt the behavior. In case ρ = 1/2 the model is also known as the majority

model that has many application in distributed computing, voting system [66], etc.

Problem Definition. Given the diffusion model, the Cost-effective, Fast, and

Massive outbreak (CFM) problem is defined as follows

19

Definition 2 (CFM Problem). Given an undirected graph G = (V,E) modeling a complex

network and an influence factor 0 < ρ < 1, find in V a minimum size d-seeding i.e. a

subset of vertices that can activate all vertices in the network within at most d rounds.

Generalization. The diffusion model can be generalized in several ways. For

example, the model can be extended naturally to cover directed networks or specify

different influence factor ρv for each node v ∈ V . For simplicity we stick with the current

model to avoid setting parameters during the experiments. Nevertheless, major results

such as the approximation ratio of the VirAds algorithm or the hardness of approximation

results still hold for the generalized models.

1.2.2 Related Work.

Outbreak can be thought of as a diffusion of information about the product and its

adoption over the network. Kempe et al. [49, 50] formulated the influence maximization

problem as an optimization problem. They showed the problem to be NP-complete

and devised an (1 − 1/e − ϵ) approximation algorithm. A major drawback of their

algorithm is that the accuracy ϵ, and efficiency depends on the number of times running

Monte-Carlo simulation of the propagation model. Later, Leskovec et al. [55] study the

influence propagation in a different perspective in which they aim to find a set of nodes

in networks to detect the spread of virus as soon as possible. They improve the simple

greedy method to run faster. The greedy algorithm is furthered improved by Chen et

al. [22] by using an influence estimation. However, the proposed algorithm might only

perform well for small values of propagation probabilities. In addition, the algorithm time

complexity should be O((m+ k) log n) instead of the claimed O(k logm+m).

Influence propagation with limited number of hops is first considered in Wang et al.

[78, 83] in which the proposed heuristic has high time complexity. Feng et al. [82] show

NP-completeness for the problem. We note that none of the mentioned approaches

handled large-scale social networks of million of nodes as we shall study in Section 6.4.

20

1.2.3 Contributions

Our contributions are summarized as follows:

• Our first finding shows that the seeding for fast and massive spreading must
contain a non-trivial fraction of nodes in the networks, which is cost-prohibitive for
large-scale networks. This is confirmed by both our theoretical analysis based on
the power-law model in [4] and our extensive experiments.

• We propose VirAds, a scalable algorithm to find a set of minimal seeding to
expeditiously propagate the influence to the whole network. VirAds outperforms
the greedy heuristics based on well-known degree centrality and scales up to
networks of hundred of million links. We prove that the algorithm guarantees a
relative error bound of O(1), assuming that the network is power-law.

• We show how hard to obtain a near optimal solution for CFM by proving the
impossibility to approximate the optimal solution within a ratio better than O(log n).

21

CHAPTER 2
MULTIPLE LINK ATTACKS

We convert the vulnerability assessment into a graph-theoretical optimization

problem: finding a minimized set of vertices/edges whose removal degrades the

pairwise connectivity to a desired degree. Considering that disrupting these vertices

and edges will considerately degrade the network performance, we refer to them as

β-disruptor throughout this paper, where 0 ≤ β < 1 denotes the fraction of desired

pairwise connectivity (which we will define later). Two new optimization problems β-

vertex disruptor and β-edge disruptor will be studied and proved to be NP-complete.

We addressed them with several pseudo-approximation algorithms with provable

performance bounds, which thus ensure the feasibility and accuracy of this evaluation

measure.

The benefit of our new measure can be briefly illustrated in Fig.2-1, compared with

the assessment using degree centrality. Notice that both networks A and B have 7

vertices and are originally strongly connected. According to the nodal degree centrality,

removing the black vertex with maximum outgoing degree 5 in Fig.2-1-(a) leaves

the network A still strongly connected with 5 vertices; and removing the black vertex

with maximum outgoing degree 4 in Fig.2-1-(b) partitions the graph into two strongly

connected components. In this sense, network A is somewhat stronger (less vulnerable)

than B. However, our model can discover that, deleting only the grey vertex in A will be

enough to decrease the overall connectivity to 0; on the contrary, at least 3 vertices in B

are required to be removed to make overall connectivity 0. Therefore, A is actually much

more vulnerable. Apparently, our measure provides more accurate assessment.

Furthermore, our study over the multiple disruption levels (different values of

β) presents a deeper meaning and greater potentials. Several recent studies in the

context of wireless networks have aimed to discover the nodes/edges whose removal

disconnects the network, regardless of how disconnected it is [44][47][48]. Apparently,

22

A B

Figure 2-1. After the “central” vertex (in black) with maximum out-going degree is
removed, network (A) is still strongly connected while (B) is fragmented;
however in fact, only removing one vertex (in grey) is enough to destroy
network (A).

this is a weaker version of our β-disruptor, since no specification over the quantified

network connectivity is concerned. However, it is not reasonable to limit the possible

disruption to only disconnecting the graph, ignoring how fragmented it is. For instance,

a scale-free network can tolerate high random failure rates [12], since the destruction to

boundary vertices may not significantly decline the network connectivity even though the

whole graph becomes disconnected. In addition, different disruption levels may require

different sets of disruptor on which our model can differentiate whereas existing methods

cannot. For example, the node centrality method always returns a set of nodes with

non-increasing degrees regardless of the disruption level.

This chapter is organized as follows. We first provide the hardness results in

Section 6.3. The pseudo-approximation algorithms for β-edge disruptor and β-vertex

disruptor are presented in Section 2.2 and Section 3.1 respectively. We propose sparse

metric technique and a branch-and-cut algorithm to find the optimal β-vertex disruptor in

Section 3.3. Section 3.4 presents the simulation results comparing the performance of

the proposed approximation algorithms and the exact branch-and-cut algorithm.

2.1 Complexity of Finding Disruptor

In this section we show that both the β-edge disruptor and β-vertex disruptor in

directed graph are NP-complete which thus have no polynomial time exact algorithms

23

unless P = NP. We state a stronger result that both problems are NP-complete even in

undirected graph with unit cost edges.

Note that only in this section we consider the problem for undirected graph

G(V,E). All results in other sections are studied on directed graphs, thus solving

both homogeneous and heterogeneous networks.

2.1.1 NP-completeness of Edge Disruptor

We use a reduction from the balanced cut problem.

Definition 3. A cut ⟨S, V \ S⟩ corresponding to a subset S ∈ V in G is the set of edges

with exactly one endpoint in S. The cost of a cut is the sum of its edges’ costs (or simply

its cardinality in the case all edges have unit costs). We often denote V \ S by S̄.

Finding a min cut in the graph is polynomial solvable [71]. However, if one asks

for a somewhat “balanced” cut of minimum size, the problem becomes intractable. A

balanced cut is defined as following:

Definition 4. (Balanced cut) An f -balanced cut of a graph G(V,E), where f : Z+ → R+,

asks us to find a cut
⟨
S, S̄

⟩
with the minimum size such that |S|, |S̄| ≥ f(|V |).

Abusing notations, for 0 < c ≤ 1
2
, we also use c-balanced cut to find the cut

⟨
S, S̄

⟩
with the minimum size such that min{|S|, |S̄|} ≥ c|V |. We will use the following results on

balanced cut shown in [77]:

Corollary 1. (Monotony) Let g be a function with

0 ≤ g(n)− g(n− 1) ≤ 1

Then f(n) ≤ g(n) for all n, implies f -balanced cut is polynomially reducible to g-

balanced cut.

Corollary 2. (Upper bound) αnϵ-balanced cut is NP-complete for α, ϵ > 0.

It follows from Corollaries 1 and 2 that for every f = Ω(αnϵ) f -balanced cut is

NP-complete. We are ready to prove the NP-completeness of β-edge disruptor:

24

Figure 2-2. Construction of H(VH , EH) from G(V,E)

Theorem 2.1. (β-edge disruptor NP-completeness) β-edge disruptor in undirected

graph is NP-complete even if all edges have unit weights.

Proof. We prove the result for the special case when β = 1
2
. For other values of β the

proof can go through with a slight modification of the reduction. We shall assume that n,

the number of nodes is a sufficient large number (for our proof n > 103).

Consider the decision version of the problem that asks whether an undirected graph

G(V,E) contains a 1
2
-edge disruptor of a specified size:

1

2
-ED = {⟨G,K⟩ | G has a

1

2
-edge disruptor of size K}

To show that 1
2
-ED is in NP-complete we must show that it is in NP and that all

NP-problems are polynomial time reducible to it. The first part is easy; given a candidate

subset of edges, we can easily check in polynomial time if it is a β-edge disruptor of size

K. To prove the second part, we show that f -balanced cut is polynomial time reducible

to 1
2
-ED where f = ⌊n−

√
2⌊n2

3
⌋+n

2
⌋.

Let G(V,E) be a graph in which one seeks to find a f -balanced cut of size k.

Construct the following graph H(VH , EH): VH = V ∪ C1 ∪ C2 where C1, C2 are two cliques

25

of size ⌊n2

3
⌋. Denote by N = |VH | = 2⌊n2

3
⌋+ n the total number of nodes in H. In addition

to edges in G,C1, and C2, connect each vertex v ∈ V to ⌊n2

4
⌋ + 1 vertices in C1 and

⌊n2

4
⌋ + 1 vertices in C2 so that degree difference of nodes in the cliques are at most one.

We illustrate the construction of H(VH , EH) in Figure 2-2.

We show that there is a f -balanced cut of size k in G iff H has an 1
2
-edge disruptor

of size K = n
(
⌊n2

4
⌋+ 1

)
+ k where 0 ≤ k ≤ ⌊n2

4
⌋. Note that the cost of any cut ⟨S, V \ S⟩

in G is at most |S||V \ S| ≤ ⌊ (|S|+|V \S|)2
4

⌋ = ⌊n2

4
⌋.

On one hand, an f -balanced cut
⟨
S, S̄

⟩
of size k in G induces a cut

⟨
C1 ∪ S,C2 ∪ S̄

⟩
with size exactly n

(
⌊n2

4
⌋+ 1

)
+ k. If we select the cut as the disruptor, the pairwise

connectivity will be at most 1
2

(
N
2

)
.

On the other hand, assume that H has an 1
2
-edge disruptor of size K = n

(
⌊n2

4
⌋+ 1

)
+

k. Remove the edges in the disruptor to reduce the pairwise connectivity to at most

1
2

(
N
2

)
. Since cutting n nodes in C1 or C2 from the cliques requires removing at least

n(⌊n2

3
⌋ − n) > n

(
⌊n2

4
⌋+ 1

)
+ k edges, let C ′

1 ⊆ C1 and C ′
2 ⊆ C2 be giant connected

subsets that induce connected subgraphs in C1 and C2. These subsets must satisfy

|C ′
1| + |C ′

2| > |C1| + |C2| − n. Denote by X1, X2 the subsets of nodes in V that are

connected to C ′
1 and C ′

2 respectively. We have X1 ∩X2 = ∅ otherwise C ′
1 and C ′

2 will be

connected; then, the pairwise connectivity will exceed 1
2

(
N
2

)
.

We will modify the disruptor without increasing its size and the pairwise connectivity

such that no nodes in the the cliques are cut off i.e. we alter the disruptor until C ′
1 = C1

and C ′
2 = C2. For each u ∈ C1 \ C ′

1 remove from the disruptor all edges connecting u to

C ′
1 and add to the disruptor all edges connecting u to X2. This will attach u to C ′

1 while

reducing the size of the disruptor at least (⌊n2

3
⌋ − n) − n. At the same time select an

arbitrary node v ∈ X1 and add to the disruptor all remaining v’s adjacent edges. This

increases the size of the disruptor at most (⌊n2

4
⌋ + 1) + n while making v isolated. By

doing so we decrease the size of the disruptor by (⌊n2

3
⌋ − n) − n − ((⌊n2

4
⌋ + 1) + n) > 0.

26

In addition, the pairwise connectivity will not increase as we connect u to C ′
1 and at the

same time disconnect v from C ′
1.

If X1 = ∅, we can select v ∈ X2 as in that case |C ′
2 ∪X2| > |C ′

1 ∪X1| that makes sure

the pairwise connectivity will not increase. We repeat the same process for every node

in C2 \ C ′
2. Since |(C1 \ C ′

1) ∪ (C2 \ C ′
2)| < n, the whole process finishes in less than n

steps and results in C ′
1 = C1 and C ′

2 = C2.

We will prove that X1 ∪ X2 = V i.e. ⟨X1, X2⟩ induces a cut in G. Assume not, the

cost to separate C1 ∪X1 from C2 ∪X2 will be at least (⌊n2

4
⌋ + 1)(|V −X1| + |V −X2|) =

(⌊n2

4
⌋+ 1)(2n− |X1| − |X2|) ≥ (⌊n2

4
⌋+ 1)(n+ 1) > n

(
⌊n2

4
⌋+ 1

)
+ k that is a contradiction.

Since X1 ∪ X2 = V we have that the disruptor induces a cut in G. To have the

pairwise connectivity at most 1
2

(
N
2

)
both (C1 ∪X1) and (C2 ∪X2) must have size at least

N−
√
N

2
. If follows that X1 and X2 must have size at least f(n) = ⌊n−

√
2⌊n2

3
⌋+n

2
⌋. The cost of

the cut induced by ⟨X1, X2⟩ in G will be n
(
⌊n2

4
⌋+ 1

)
+ k − n(⌊n2

4
⌋+ 1) = k.

2.1.2 Hardness of Approximation: Vertex Disruptor

Theorem 2.2. β-vertex disruptor in undirected graph is NP-complete.

Proof. We present a polynomial-time reduction from Vertex Cover (VC), an NP-hard

problem [40]:

Instance: Given a graph G and a positive integer k.

Question: Does G have a VC of size at most k?

to a decision version of β-vertex disruptor when β = 0

Instance: Given a graph G and a positive integer k

Question: Does G have a β-vertex disruptor of size at most k when β = 0?

Pairwise connectivity equals zeros if and only if the complement set of the disruptor

is an independent set or in other words the disruptor must be a VC.

Theorem 2.3. Unless P = NP, β-vertex disruptor cannot be approximated within a factor

of 1.36.

27

Proof. We use the same reduction in Theorem 2.2. Assume that we can approximate

β-vertex disruptor within a factor less than 1.36 when β = 0. In [34], Dinur and Safra

showed that approximating VC within constant factor less than 1.36 is NP-hard. Since

we have an one-to-one mapping between the set of vertex disruptors when β = 0

and the set of VCs, it follows that we can approximate VC within a factor less than 1.36

(contradiction).

2.2 Bicriteria Approximation Algorithm for β-edge Disruptor

In this section, we present an O(log
3
2 n) pseudo-approximation algorithm for the

β-edge disruptor problem in the case when all edges have uniform cost i.e. c(u, v) =

1 ∀(u, v) ∈ E(G). Formally, our algorithm finds in a uniform directed graph G a β′-edge

disruptor whose the cost is at most O(log
3
2 n)OPTβ−ED, where β′

4
< β < β′ and OPTβ−ED

is the cost of an optimal β-edge disruptor.

As shown in Algorithm 1, the proposal algorithm consists of two main steps. First,

we constructs a decomposition tree of G by recursively partitioning the graph into two

halves with directed c-balanced cut. Second, we solve the problem on the obtained tree

using a dynamic programming algorithm and transfer this solution to the original graph.

These two main steps are explained in the next two sections.

2.2.1 Balanced Tree-Decomposition

A tree decomposition of a graph is a recursive partitioning of the node set into

smaller and smaller pieces until each piece contains only one single node. We show the

tree construction in Algorithm 1 (line 1 to 11). Our decomposition tree is a rooted binary

tree whose leaves represent nodes in G. (Because our decomposition tree is a binary

tree with n leaves, it will contain exactly n − 1 non-leaf nodes. One can prove this with

induction on number of nodes.)

Definition 5. Given a directed graph G(V,E) and a subset of vertices S ⊂ V . We

denote the set of edges outgoing from S by δ+(S); the set of edges incoming to S by

δ−(S). A cut (S, V \ S) in G is defined as δ+(S). A c-balanced cut is a cut (S, V \ S) s.t.

28

min{|S|, |V \ S|} ≥ c|V |. The directed c-balanced cut problem is to find the minimum

c-balanced cut.

Note that a cut (S, V \ S) separate pairs (u, v) ∈ S × (V \ S) as paths from v to u

cannot exist i.e. no SCC can contain vertex in both S and V \ S.

The decomposition procedure is as follows. We start with the tree T containing

only one root node t0. We associate the root node t0 with the vertex set V of G i.e.

V (t0) = V (G). For each node ti ∈ T whose V (ti) contains more than one vertex

and V (ti) has not been partitioned, we partition the subgraph G[V (ti)] induced by V (ti)

in G using a c-balanced cut algorithm. In detail, we use the directed c-balanced cut

algorithm presented in [2] that finds in polynomial time a c′-balanced cut within a

factor of O(
√
log n) from the optimal c-balanced cut for c′ = αc and fixed constant α. The

constant c is chosen to be 1−
√

β
β′ . Create two child nodes ti1, ti2 of ti in T corresponding

to two sets of vertices of G[V (ti)] separated by the cut. We associate with ti a cut cost

cost(ti) equal to the cost of the c-balanced cut.

We define the root node t0 to be on level 1. If a node is on level l, all its children

are defined to be on level l + 1. Note that collections of subsets of vertices in G that

correspond to nodes in a same level of T induces a partition in G.

One important parameter of the decomposition tree is the height i.e. the maximum

level of nodes in T . Using balanced cuts guarantees a small height of the tree that in

turn leads to a small approximation ratio. When separating V (ti) using the balanced cut,

the size of the larger part is at most (1 − c′)|V (ti)|. Hence, we can prove by induction

that if a node ti is on level k, the size of the corresponding collection V (ti) is at most

|V | × (1− c′)k−1. It follows that the tree’s height is at most O(− log1−c′ n) = O(log n).

2.2.2 Dynamic Programming Algorithm on the Decomposition Tree

In this section, we present the second main step which uses the dynamic programming

to search for the right set of nodes in T that induces an cost-efficient partition in G

29

Algorithm 1. β-edge Disruptor

Input: Uniform edges’ weight directed graph G = (V,E)

and 0 ≤ β < β′ < 1

Output: A β′-edge disruptor of G.

/* Construct the decomposition tree */

1. c← 1−
√

β
β′ .

2. T (VT , ET)← ({t0}, ϕ), V (t0)← V (G), l(t0) = 1

3. while ∃ unvisited ti with |V (ti)| ≥ 2 do

4. Mark ti visited, create new child nodes ti1, ti2 of ti.

5. VT ← VT ∪ {ti1, ti2}
6. ET ← ET ∪ {(ti, ti1), (ti, ti2)}
7. Separate G[V (ti)] using directed c-balanced cut.

8. Associate V (ti1), V (ti2) with two separated components.

9. cost(ti)← The cost of the balanced cut

/* Find the minimum cost G-partitionable */

10. Traverse T in post-order, for each ti ∈ T do

11. for p← 0 to β′(n
2

)
12. if P(G[V (ti)]) ≤ p then cost(ti, p)← 0

13. else cost(ti, p)← min{cost(ti1, p1)+
cost(ti2, p2) + cost(ti) | p1 + p2 = p}

14. Find F opt
β′ associating with T opt

β′ = minp≤β′(n2)
{cost(t0, p)}

15. Return union of c-balanced cuts at ti ∈ A(F opt
β′).

30

t
0

level 1

level 2

0

t
1 t

… …
t
1 t

2

level 3

… …

t
4

l l 4

t
3

… …
… …

t
5

t
6

level 4

… …

Figure 2-3. A part of a decomposition tree. F = {t2, t3, t5, t6} is a G-partitionable. The
corresponding partition {V (t2), V (t3), V (t5), V (t6)} in G can be obtained by
using cuts at ancestors of nodes in F i.e. t0, t1, t4.

whose pairwise connectivity is at most β′(n
2

)
. The details of this step are shown in

Algorithm 1 (lines 12 to 18).

Denote a set F = {tu1 , tu2 , . . . , tuk} ⊂ VT where VT is the set of vertices in T

so that V (tu1), V (tu2), . . . , V (tuk) is a partition of V (G) i.e. V (G) =
k⊎

h=1

Vuh. We say

such a subset F is G-partitionable. Denote by A(ti) the set of ancestors of ti in T and

A(F) =
∪
ti∈F

A(ti). It is clear that a F is G-partitionable if and only if F satisfies:

1. ∀ti, tj ∈ F : ti /∈ A(tj) and tj /∈ A(ti)

2. ∀ti ∈ VT , ti is a leaf: A(ti) ∩ F ̸= ϕ

In case F is G-partitionable, we can separate V (tu1), V (tu2), . . . , V (tuk) in G

by performing the cuts corresponding to ancestors of node in F during the tree

construction. For example in Figure 2-3, we show a decomposition tree with a

G-partitionable set {t2, t3, t5, t6}. The corresponding partition {V (t2), V (t3), V (t5), V (t6)}

in G can be obtained by cutting V (t0), V (t1), V (t4) successively using balanced cuts in

the tree construction. The cut cost, hence, will be cost(t0)+ cost(t1)+ cost(t4). In general,

31

the total cost of all the cuts to separate V (tu1), V (tu2), . . . , V (tuk) will be:

cost(F) =
∑

tu∈A(F)

cost(tu)

The pairwise connectivity in G then will be:

P(F) =
∑
tu∈F

P(G[V (tu)])

We wish to find F so that P(F) ≤ β′(n
2

)
i.e. the union of cuts to separate V (tu1), V (tu2), . . . , V (tuk)

forms a β′-edge disruptor in G. Because of the suboptimal structure in T , finding such

a G-partitionable subset F in VT with minimum cost(F) can be done in O(n3) using

dynamic programming.

Denote cost(ti, p) the minimum cut cost to make the pairwise connectivity in G[V (ti)]

equal to p using only cuts corresponding to nodes in the subtree rooted at ti. The

minimum cost for a G-partitionable subset F that induces a β′-edge disruptor of G is

then

T opt
β′ = min

p≤β′(n2)
{cost(t0, p)}

where t0 is the root node in T .

We can easily derive the recursive formula:

cost(ti, p) =

0 if P(G[V (ti)]) ≤ p

min
π≤p

cost(ti1, π) + cost(ti2, p− π) + cost(ti) if not
where ti1, ti2 are

children of ti.

In the first case, when P(G[V (ti)]) ≤ p we cut no edges in G[V (ti)] hence, cost(ti, p) =

0. Otherwise, we try all possible combinations of pairwise connectivity π in V (ti1) and

p− π in V (ti2). The combination with the smallest cut cost is then selected.

We now prove that T opt
β′ ≤ O(log

3
2 n)Opt

β-ED, where Opt
β-ED denotes the cost of

the optimal β-edge disruptor in G.

32

Lemma 1. There exists a G-partitionable subset of T that induces a β′-edge disruptor

whose cost is at most O
(
log

3
2 n
)

Opt
β-ED.

Proof. Let Dβ be an optimal β-edge disruptor in G of size Opt
β-ED and Cβ = {C1, C2, ..., Ck}

be the set of SCCs, after removing Dβ from G.

We construct a G-partitionable subset XT as in the Algorithm 2. We traverse tree

T in preorder i.e. every parent will be visited before its children. For each node ti, we

select ti into XT if there exists some component Cj ∈ Cβ that |V (ti) ∩ Cj| ≥ (1− c)|V (ti)|

and no ancestors of ti have been selected into XT .

We can verify that XT satisfies two mentioned conditions of a G-partitionable subset.

For each Cj ∈ Cβ, define

N(Cj) = {ti ∈ T : |V (ti) ∩ Cj| ≥ (1− c)|V (ti)|}.

Since V (ti), ti ∈ T are disjoint subsets. We have

P(XT) ≤
∑
ti∈XT

(
|V (ti)|

2

)
=

1

2

∑
Cj∈Cβ

∑
ti∈N(Cj)

|V (ti)|2 −
n

2

≤ 1

2

∑
Cj∈Cβ

(∑
ti∈N(Cj)

|V (ti)|
)2

− n

2

≤ 1

2

∑
Cj∈Cβ

(√
β′/β|Cj|

)2
− n

2

<
β′

β

1

2

(∑
Cj∈Cβ

|Cj|2 − n
)
≤ β′

(
n

2

)

Finally we show that cost(XT) ≤ O(log
3
2 n)Opt

β-ED. Let denote by h(T) the height of T

and LiT the set of nodes at the ith level in TG. We have:

cost(XT) =

h(T)∑
i=1

∑
tu∈(Li

T∩A(XT))

cost(tu) (2–1)

33

If tu ∈ A(XT) then tu is not selected to XT . Hence, there exists Cj ∈ C so that |V (tu) ∩

Cj| < (1− c)|V (tu)| (otherwise tu was selected into XT as it satisfied the conditions in the

line 3, Algorithm 2). To guarantee c < 1− c, we need c < 1/2 i.e. β > β′

4
.

Since the edges in Dβ separate Cj from the other SCCs, they also separates

Cj∩V (tu) from V (tu)\Cj in G[V (tu)]. Denote by δ(tu, Dβ) the set of edges in Dβ separating

Cj ∩ V (tu) from V (tu) \ Cj in G[V (tu)]. Obviously, δ(tu, Dβ) is a directed c-balanced cut

of G[V (tu)]. Since, the cut we used in the tree construction is only O(
√
log n) times the

optimal c-balanced cut. We have cost(tu) ≤ O(
√
log n)|δ(tu, Dβ)|.

Recall that if two nodes tu, tv are on a same level then V (tu) and V (tv) are disjoint

subsets. It follows that δ(tu, Dβ) and δ(tv, Dβ) are also disjoint sets. Therefore, the cut

cost at the ith level

∑
tu∈(Li

T∩A(XT))

cost(tu)

≤ O(
√
log n)

∑
tu∈(Li

T∩A(XT))

|δ(tu, Dβ)|

≤ O(
√
log n)|

∪
tu∈(Li

T∩A(XT))

δ(tu, Dβ)|

= O(
√
log n)Opt

β-ED

Since the number of levels h(T) = O(log n), by Eq. 2–1 we have cost(XT) ≤

O(log
3
2 n)Opt

β-ED.

Since there exists a G-partitionable subset of T that induces a β′-edge disruptor

whose cost is no more than O
(
log

3
2 n
)

Opt
β-ED as shown in Lemma 1 and the dynamic

programming always finds the best latent solution in T , the following theorem follows.

Theorem 2.4. Algorithm 1 achieves a pseudo-approximation ratio of O(log
3
2 n) for the

β-edges disruptor problem.

Time complexity : Construction of the decomposition tree takes O(n9.5). The major

portion of time is for solving an semidefinite programming with Ω(n3) constraints. Finding

34

Algorithm 2. Find a good G-partitionable subset of T

that induces a β′-edge disruptor in G

Initialization: XT ← ϕ; Preorder-Selection(t0).

Preorder-Selection(tu)

1: if (∃Cj ∈ Cβ : |V (tu) ∩ Cj| ≥ (1− c)|V (tu)|) then

2: XT ← XT ∪ {tu}
3: else let tu1, tu2 be children of tu,

4: Preorder-Selection(tu1)

5: Preorder-Selection(tu2)

6: end if

the optimal solution using Dynamic Programming takes O(n3). Hence, the overall time

complexity is O(n9.5).

2.3 Bounds on the Size of Edge Disruptor

Simultaneous attacks can cause devastating damage, breaking down communication

networks into small fragments. To mitigate the risk and develop proactive responses, it is

essential to assess the robustness of network in the worst-case scenarios. In this paper,

we propose a spectral lower-bound on the number of removed links to incur a certain

level of disruption in terms of pairwise connectivity. Our lower-bound explores the latent

structural information in the network Laplacian spectrum, the set of eigenvalues of

the Laplacian matrix, to provide guarantees on the robustness of the network against

intentional attacks. Such guarantees often cannot be found in heuristic methods for

identifying critical infrastructures. For the first time, the attack-resistant proofs of large

scale communication networks against link attacks are presented.

Connectivity plays a vital role in network performance and is fundamental to

vulnerability assessment. The number of connected node pairs in the network, (a.k.a

pairwise connectivity), lends itself as an effective measure to account for the effect of the

attacks [11, 14, 15, 30, 33, 62, 64].

35

Vulnerability assessment has been recently formulated as an connectivity

optimization problem called β-edge disruptor, which finds a minimum cost links whose

removal causes a significant level (β) of network pairwise degradation [33]. The β-edge

disruptor reflects the common sense that when breaking the network by removing links,

the more links required to be removed, the less vulnerable the network is. The β-edge

disruptor approach enables the exploration of different network disruption levels which

can be used to gain the deeper insight into network structure and robustness in various

operating environments.

Unfortunately, the β-edge disruptor problem is NP-hard [33] i.e. there is no efficient

algorithm to solve the problem, unless P=NP. A pseudo-approximation algorithm and

mathematical approaches for the β-edge disruptor problems are introduced in [33]

and [30], respectively. Although those methods can provide performance guarantees,

they are only applicable for small and medium networks of few thousand nodes. For

larger networks, we have to rely on heuristics which can have arbitrary bad worst-case

performance. Hence, there is a lack of methods to provide robustness proofs against

intentional attacks for large networks.

In this paper, we analyze the network spectrum, the eigenvalues of the Laplacian

matrix, to give a lower-bound for the minimum size of a β-edge disruptor, thus, give a

certificate on the robustness of the network. Our spectral bound is formulated as an

optimization problem of the Laplacian eigenvalues, which are known to contain rich

information about the topological structure [23].

Since exact measurement for the β-edge disruptor is not available in general, our

lower-bound can be coupled with upper bound methods1 to narrow down the range

for actual vulnerability/robustness of the network. We emphasize that while upper

bounds for β-edge disruptor (or any other minimization problem) can be designed easily,

1 Each heuristic to find β-edge disruptor is an upper bound for the problem

36

techniques for deriving lower-bound is much scattered in literature. Our contributions are

summarized as follows.

• We introduce a new spectral lower-bound for the β-edge disruptor problem in form
of an eigenvalue optimization problems. At the same time, we enrich the literature
on lower-bound techniques.

• We present two efficient methods to compute the proposed lower-bound: 1) the
Lagrange multiplier method and 2) the dynamic programming algorithm. Moreover,
the Lagrange multiplier method can derive the lower-bound with only a small
number of smallest eigenvalues. This is important for large networks where
computing the whole network spectrum is both time and memory consuming.

• We perform experiments on different network types and real large-scale networks
to demonstrate the quality of the proposed lower-bound and quantify the
robustness of the studied networks against intentional attacks.

Organization. We briefly present terminologies and problem definitions in

subsection 4.1. In subsection 2.3.2, we introduce the spectral lower-bound for the

the β-disruptor problem together with two methods to compute the lower-bound.

Experimental results on different network models and real network instances are

obtained in subsection 6.4. Finally, we conclude the paper in subsection ??.

2.3.1 Laplacian Matrix and and Its Eigenvalues

We abstract our general network model as a graph G = (V,E), where V =

{v1, v2, . . . , vn} refers to a set of nodes and E refers to a set of links. Each edge (vi, vj) ∈

E has a removal cost cij ≥ 0 (and cij = 0 if (vi, vj) /∈ E). For convenience, we also

denote the number of nodes and links by n and m, respectively.

Since the main purpose of network lies in connecting all the interacting elements

in the network, we study on the overall pairwise connectivity, which is defined as

the number of connected vertex pairs in G. If G is an undirected graph, a vertex pair

(u, v) ∈ V × V is connected iff there exists a path between u and v. We denote the

pairwise connectivity of a graph G by P(G). Apparently, the pairwise connectivity is

maximized at
(
n
2

)
when G is a (strongly) connected graph.

37

Let A = {cij} be the weighted adjacency matrix and D be the degree matrix,

defined as the diagonal matrix with the weighted degrees d1, d2, . . . , dn on the diagonal,

where di =
∑

j cij.

The unnormalized graph Laplacian matrix [61] is defined as

L = D −A

The matrix L is symmetric and positive semi-definite, since for every vector x ∈ Rn we

can verify that

xTLx =
1

2

n∑
i,j=1

cij(xi − xj)2 ≥ 0. (2–2)

A direct consequence is that L has n non-negative, real-valued eigenvalues λ1 ≤ λ2 ≤

. . . ≤ λn. In addition, the smallest eigenvalue of λ1 is zero and the corresponding

eigenvector is the constant one vector 1 [61].

The second smallest eigenvector λ2 is known as the algebraic connectivity of the

graph and can be used to describe many properties of graphs [61]. For example, the

graph G is connected if and only if λ2 > 0. For β-edge disruptor problem, the following

lower-bound can be derived from λ2.

Lemma 2. For any connected graph G, we have

OPTβ ≥
1− β
2

λ2(n− 1) (2–3)

where OPTβ denotes the minimum size of a β-edge disruptor.

However, the bound provided in Eq. 2–3 is rather loose, as the value of λ2 is often

very close to zero (for example when bridges, edges whose deletion increases the

number of connected components, are presented in the networks.) This motivates us to

study higher eigenvalues beyond λ2 to design stronger bound for the β-edge disruptor

problem.

38

2.3.2 Spectral Lower-bound for Link Assessment

In this subsection, we derive a lower-bound on size of β-edge disruptor using

higher eigenvalues of the Laplacian matrix L. We first formulate the lower-bound as an

eigenvalue optimization problem. Then two methods with different trade-off between

time and quality are introduced to compute the lower-bound.

Let E∗
β be an optimal β-edge disruptor and s∗1 ≥ s∗2 ≥ . . . ≥ s∗n be the sizes of the

connected components after removing E∗
β from the network. Then we can relate OPTβ

to the size of the components via the following lemma.

Lemma 3. [35] Let a k-partition of a graph be a division of the vertices into k disjoint

subsets containing s1 ≥ s2 ≥ . . . ≥ sk vertices. Let Ecut be the set of edges whose

two vertices belong to different subsets. Let λ1 ≤ λ2 ≤ . . . ≤ λk, be the k smallest

eigenvalues of the Laplacian matrix plus any diagonal matrix U such that the sum of all

the elements of U is zero. Then

|Ecut| ≥
1

2

k∑
i=1

siλi.

Thus, we have OPTβ = |E∗
β| ≥ 1

2

∑n
i=1 s

∗
iλi. Here we allow imaginary subsets of size

zero and assume w.l.o.g. that k = n. Note that s∗1, . . . , s∗n are not known without finding

E∗
β. Thus, we consider all possible values of {s1, . . . , sn} which infer network partitions

of pairwise connectivity at most β
(
n
2

)
, and get the minimum of the sum 1

2

∑n
i=1 siλi as a

lower-bound on OPTβ.

Formally, our spectral lower-bound on OPTβ is given by solving the following

quadratic programming (QP) optimization problem.

39

minimize
1

2

n∑
i=1

siλi (2–4)

subject to
n∑
i=1

si = n (2–5)

n∑
i=1

(
si
2

)
≤ β

(
n
2

)
(2–6)

si ∈ {0, 1, . . . , n} (2–7)

Theorem 2.5. Let Qβ be the optimal objective of the QP problem (2–9-2–12) and OPTβ

be the minimum β-edge disruptor of graph G = (V,E). Then, Qβ ≤ OPTβ for β ∈ [0, 1].

Moreover, the equality holds when β = 0 or β = 1

Proof. As discussed in the previous paragraph, the sizes of connected components after

removing optimal β-edge disruptor satisfy all constraints (2–5-2–7). Hence, Qβ ≤ OPTβ

for all β ∈ [0, 1]. We continue with the tightness of the bound at extreme cases when

β = 0 and β = 1.

Case β = 0: all subsets are of size one. Hence, Q1 = 1
2

n∑
i=1

λi =
1

2
Trace(L) =

1

2
(2|E|) = |E|. The only way to cut all pairs in the network is to cut all edges. In other

words, Q0 = OPT0 = |E|.

Case β = 1: in order to achieve the maximum connectivity
(
n
2

)
, there must be a

single partition in the network and the optimal disruptor cutting no edges. That is s1 = n

and si = 0 ∀i > 1. Since λ1 = 0, it follows that Q1 = 0 = OPT1.

Since si are integral values, we propose a dynamic programming algorithm to

compute the spectral bound in next subsubsection.

2.3.2.1 Dynamic Programming Method

We first describe the optimal solution structure for the optimization problem in

(2–9-2–12).

40

Lemma 4. There exists an optimal solution s∗ of QP(2–4-2–7) such that s∗1 ≥ s∗2 ≥ . . . ≥

s∗n.

Proof. Let s∗ = {s∗1, s∗2, . . . , s∗n} be an optimal solution of QP(2–9-2–12). Denote inv(s∗)

the number of inversions of m∗ i.e. such pairs of indices (i, j) that i < j such that

s∗i > s∗j . If inv(s∗) = 0, then s∗1 ≥ s∗2,≥ . . . ≥ s∗n, otherwise there exists a pair i < j

and s∗i > s∗j . Construct s′ by swapping s∗i and s∗j inside s∗. Then, s′ is a feasible solution

of QP(2–9-2–12) and the objective increases an amount s∗iλj + s∗jλi − (s∗iλi + s∗jλj) =

(s∗i − s∗j)(λj − λi) ≥ 0. Thus, we obtain a new optimal solution with less the number of

inversions. Repeat the process at most
(
n
2

)
, that is the maximum number of inversions

in s∗, we finally obtain an optimal solution with no inversions. That optimal solution shall

satisfy the lemma’s condition.

Algorithm 3: ILB(G, β)
1: Compute λ1, . . . , λn

2: Lk(l, p) =

{
+∞, if p < pmin(l, k)

λ1l = 0, if p ≥ pmax(l, k)

3: for k = 1 to n

4: for l = 1 to n

5: for p = pmin(l, k) to min
{
β
(
n
2

)
, pmax(l, k)

}
6: Lk(l, p) = min

{
Lk−1(l, p),

Lk(l − k, p− l + k) +
∑k

i=1 λi

}
7: if Lk−1

(
n, β

(
n
2

))
= Lk

(
n, β

(
n
2

))
8: return ⌈Lk

(
n, β

(
n
2

))
⌉

9: return ⌈Ln
(
n, β

(
n
2

))
⌉

For k ≤ l ≤ n and p ≤ β
(
n
2

)
, define Lk(l, p) to be the minimum spectral bound

obtained by first k subsets that the total sizes is l and the total pairwise connectivity is at

most p. That is

Lk(l, p) = min
s(k)∈Nk

{
s(k)Tλ(k) : ∥s(k)∥1 = l,

k∑
i=1

(
si
2

)
≤ p

}
,

Then the optimal objective value QP(2–4-2–7) shall be given by Qβ = Ln(n, β
(
n
2

)
).

41

By Lemma 13, we pay attention only to partitions satisfying s1 ≥ s2 ≥ . . . ≥ sn. We

now derive the recursive formula for Lp(l, k) based on the sub-optimal structure of the

QP problem. Consider two possible cases of sk

• sk = 0: There are at most k − 1 partitions whose sizes sum up to l. Hence, for this
case L(l, k) = Lk−1(l, p).

• sk > 0: Since s1 ≥ s2 ≥ . . . ≥ sk > 0. Let s̃i = si − 1 ≥ 0, the vector
s̃ = {s̃1, s̃2, . . . , s̃k} satisfies simultaneously the following

k∑
i=1

λis̃i =
k∑
i=1

λisi −
k∑
i=1

λi

k∑
i=1

s̃i =
k∑
i=1

si − k = l − k

k∑
i=1

(
s̃i
2

)
=

k∑
i=1

[(
si
2

)
− si + 1

]

=
k∑
i=1

(
si
2

)
− l + k ≤ p− l + k

Therefore, in this case Lk(l, p) = Lk(l − k, p− l + k) +
∑k

i=1 λi
In summary, we have

Lk(l, p) = min

{
Lk−1(l, p),

Lk(l − k, p− l + k) +
∑k

i=1 λi

}
We compute value of Lp(l, k) in increasing order of p and l but in decreasing order

of k. The base cases for Lp(l, k) are as follow.

Lk(l, p) =

 +∞, if p < pmin(l, k)

λ1l = 0, if p ≥ pmax(l, k)
(2–8)

where pmin(l, k) =
(⌈l/k⌉

2

)
(l mod k) +

(⌊l/k⌋
2

)
(k − l mod k) and pmax(l, k) =

(
l
2

)
that are the

minimum and maximum pairwise connectivity of a graph with l vertices and k connected

components, respectively.

42

Theorem 2.6. Optimal solutions of QP(2–4-2–7) can be found in O(n4) time and O(n3)

space.

Thus, the spectral bound can be computed in polynomial time. However, the high

time complexity of the dynamic programming algorithm prevents the method from being

applied to large networks. Moreover, the dynamic programming algorithm requires

computing the whole set of eigenvalues of the networks, which is both time and memory

consuming. We continue with an approximation of the spectral bound that achieves

(almost) the same lower-bound quality in significantly less time.

2.3.2.2 Lagrange Multipliers Method

We relax the integral conditions on si to obtain the following relaxation of the QP,

rewritten in vector notation.

minimize
1

2
sTλ (2–9)

subject to ∥s∥1 − n = 0, (2–10)

∥s∥22 −∆β ≤ 0, (2–11)

s ≥ 0, (2–12)

where ∆β = βn(n− 1) + n and ∥.∥ denotes the Euclidean norm.

The Lagrange multiplier is then

L(s, χ, ψ,ω) =
1

2
sTλ+ χ(∥s∥1 − n) + ψ(∥s∥22 −∆β)− ωTs

where ω = (ω1, . . . , ωn) ≥ 0 is a positive multiplier vector.

Notice that the problem is a convex optimization problem with differentiable

objective and constraint functions and it satisfies the Slater’s condition with s =

(1, 1, . . . , 1)T [19]. Hence, the following Karush–Kuhn–Tucker (KKT) conditions provide

43

the necessary and sufficient conditions for optimality

∇sL =
1

2
λ+ χ+ 2ψs− ω = 0

∇χL = ∥s∥1 − n = 0

∇ψL = ∥s∥22 −∆β = 0

ωTs = 0

s, ψ,ω ≥ 0

Algorithm 4: LMB(G, β)
1: t = ⌈2/β⌉, ∆β ← ⌊βn(n− 1) + n⌋
2: Compute λ1, . . . , λt
3: for k = 1 to n

4: if k > t then
5: t = min{2t, n}
6: Compute λ1, . . . , λt
7: Compute ψ as in Eq. 2–20.
8: Compute D(k)

β , and C(k)β as in Eqs. 2–21, and 2–22
9: if (ψ ≥ 0 and C(k)β ≥ 0) or (k = n) then
10: return ⌈D(k)

β ⌉
11: end for

Let k = max{i | si > 0}. By Lemma 13 and the complementary slackness ωTs = 0,

we have si > 0 for i ≤ k, thus, si = 0 ∀i > k and ωj = 0 ∀j ≤ k.

44

Denote s(k) = {s1, s2, . . . , sk} and λ(k) = {λ1, λ2, . . . , λk}, the KKT condition can be

simplified to

∇s(k)L =
1

2
λ(k) + χ+ 2ψs(k) = 0, i ≤ k (2–13)

∇siL =
1

2
λi + χ− ωi = 0, i > k (2–14)

∇χL = ∥s(k)∥1 − n = 0, (2–15)

∇ψL = ∥s(k)∥22 −∆β = 0, (2–16)

s(k) > 0, ψ > 0,ω(k) = 0 (2–17)

For each value of k, we can solve for values of si and check if all si ≥ 0. The other

unknowns can be found as follows. First, substitute the constraint (2–15) into the sum of

the constraints (2–13) to obtain χ in terms of ψ.

χ = −2n
k
ψ − ∥λ

(k)∥1
2k

(2–18)

Therefore, we can derive s(k) from (2–13) as

s(k) =
n

k
+

(
∥λ(k)∥1

4k
− λ(k)

4

)
1

ψ
(2–19)

Substituting the above equation into the condition (2–16) and solving for ψ, we have

∥s(k)∥22 −∆β = 0

⇔
(
∥λ(k)∥22

16
− ∥λ

(k)∥21
16k

)
1

ψ2
= ∆β −

n2

k

⇔ψ =
1

4

(
∥λ(k)∥22 − ∥λ(k)∥21/k

∆β − n2

k

)1/2

(2–20)

The objective is then

D(k)
β =

1

2
s(k)Tλ(k) = n

∥λ(k)∥1
2k

+

(
∥λ(k)∥21

4k
− ∥λ

(k)∥22
4

)
1

2ψ

= n
∥λ(k)∥1

2k
− 1

2

(
∥λ(k)∥22 −

∥λ(k)∥21
k

)1/2(
∆β −

n2

k

)1/2

(2–21)

45

Since λ1 ≤ λ2 ≤ . . . ≤ λn, Eq. 2–19 implies that s(k)1 ≥ s
(k)
2 ≥ . . . ≥ s

(k)
k . Hence, in order

to satisfy s(k) > 0, it is sufficient that

C(k)β = s
(k)
k =

n

k
+

(
∥λ(k)∥1

4k
− λk

4

)
1

ψ
≥ 0. (2–22)

Theorem 2.7. The size of a β-edge disruptor is lower-bounded by

Dβ = min
n≥k≥n2/∆β

{
D(k)
β | C

(k)
β > 0

}
,

where D(k)
β and C(k)β are given by Eqs. 2–21 and 2–22.

The steps to solve the relaxation of the QP is summarized in the Algorithm 4 (LMB

Algorithm).

Time complexity. The LMB algorithm spends its major time on computing the

eigenvalues. This can be done with Implicitly Restarted Lanczos Method which has

worst-case time complexity O(mKh+nK2h+K3h) where K is the number of eigenvalues

to be computed, and h is the number of iterations for the eigenvalue algorithm to

converge [80]. Given the eigenvalues, the rest of LMB takes only O(n) time in the

worst-case.

The number of required eigenvalues K is small in our algorithm. At beginning,

the algorithm computes t = ⌈2/β⌉ smallest eigenvalues and the number of computed

eigenvalues is double each time if necessary. In our experiments, the number of needed

eigenvalues is 2/β in most cases. For example, to bound the number of necessary

links whose removal disrupts 90% pairwise connectivity we only need to compute about

20 smallest eigenvalues of the Laplacian matrix. We found the LMB algorithm to be

scalable, taking linear time with respect to the number of nodes and edges.

2.3.2.3 Time and quality trade-off

On one hand, the ILB algorithm (Algorithm 3) provides a better bound than that of

the LMB algorithm. The reason is that ILB solves for exact solutions of the QP while

46

��

���

����

�����

������������������

�	
�

��	��������
�������

��������������

A Erdos-Reyni (random) network

��

���

����

�����

������������������

�	
�

B Barabasi (power-law) network

��

���

����

�����

������������������

�	
�

C Watts-Strogatz network

Figure 2-4. Minimum cost and lower-bounds for β-disruptor on the synthesis networks

�����

����

��

���

����

�����

������

�������

������������������

	
��

A Erdos-Reyni (random) network

�����

����

��

���

����

�����

������

�������

������������������

	
��

B Barabasi (power-law) network

�����

����

��

���

����

�����

������

�������

������������������

	
��

C Watts-Strogatz network

Figure 2-5. Running time on the synthesis networks

LMB only targets a relaxation of the QP. However, the difference between the output of

two algorithms is negligible small and either zero or one 2 in our experiments.

On the other hand, the LMB has much more practical time complexity. The ILB

has high time complexity O(n4) and can only applied for network up to few thousand

nodes. In contrast, LMB takes only linear time to compute its competitive bound. Overall

for small and medium networks, one can apply ILB algorithm (or other mathematical

approaches [30]) to compute the lower-bound, however, for large networks LMB remains

the only choice.

47

2.3.3 Experimental Results

We compute our spectral lower-bound for both synthetic and real-world networks

and compare the results with the optimal results whenever possible.

2.3.3.1 Synthetic Networks

We generate the synthetic networks following well-known complex network models.

All networks have 100 nodes and around 300 edges. The details of those networks are

as follows.

• Erdos-Reyni: A random graph of 100 vertices and 300 edges following the
Erdos-Reyni model [36].

• Barabsi-Albert: A power-law model using preferential attachment mechanism
[12].

• Small world: A random graph following Watts and Strogatz model [79]. The
dimension of the lattice is set to be 3 and the rewiring probability is 0.3.

The optimal solutions are found with the integer programming using the sparse metric

technique in [30]. The technique in [30] is also applied to compute the lower-bound

given by solving the linear programming. The results produced by ILB and LMB

algorithms are identical (after rounded up) and plotted under the same name “spectral

bound”. All algorithms were run on a PC with Intel Xeon 2.93 Ghz processor and 12 GB

memory. The integer programming (IP) and the linear programming (LP) are solved with

the mathematical optimization package GUROBI 4.5.

The minimum number of links whose removal causes certain level of disruption, are

shown in Fig. 4-4. For all three different networks, solving LP gives good lower-bound

on the minimum number of links to remove. The spectral bounds are much worse than

the LP bounds in the random and small-world networks; however, the spectral bound

2 Both algorithms round up their results to the nearest integers.

48

closely approaches the LP bounds and the optimal solution when the network has the

power-law topology of the Barabasi model.

As shown in Fig. 4-5, there is a big gap between the running time of the spectral

bound and those of LP and IP. Note that all the spectral bound are computed at once,

i.e., the provided running time is the total running time over all different values of β. Even

though the running time of the spectral bound is still thousand of times faster than LP

and IP.

Overall, while IP is best used for small networks, and LP can be used for medium

networks of few thousand nodes, the only feasible method to compute the lower-bound

in large networks is the spectral bound. One of the attractive aspect of the LMB spectral

bound, described in the Alg. 2, is that the algorithm can be easily implemented in a

distributed manner. The most time-consuming part of the algorithm is to compute the

few smallest eigenvalues. This can be done distributedly with the existing mathematical

software [16].

Table 2-1. Sizes of the investigated networks and the corresponding running time to
compute the lower-bound

CAIDA AS Oregon AS P2P Gnutella

Vertices 8,020 11,174 22,663
Edges 36,406 23,410 109, 386

Time (s) 1530.1 321.0 207.9

2.3.3.2 Real-world Datasets

We compute the spectral lower-bounds for real networks are shown in Fig. 2-6.

Neither LP nor IP can run on these networks due to both time and memory limits. The

studied networks are

• Gnutella P2P: Gnutella peer-to-peer network from from Aug. 25, 2002 [56]. Nodes
represents hosts in the network and edges are the connections between the
Gnutella hosts.

• Oregon AS: AS peering information inferred from Oregon route-views between
Mar. 31 and May 26, 2001 [56].

49

• CAIDA AS: The CAIDA AS Relationships Datasets, from September 17, 2007 [56].

The lower-bounds in Fig. 2-6 indicates that it is difficult to destroy major connectivity

in communication networks. For examples, even after removing 369 links at least 50%

node pairs in the CAIDA AS network stay connected; and to bring down the connectivity

level in the Gnutella P2P network to 15% one has to destroy at least 960 links. Due to

low edge density, the Oregon AS network tends to be more vulnerable than the other

two networks. Nevertheless, uterly disrupting the connectivity in the network to 5% level

would require removing more than 763 links.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

S
pe

ct
ra

l L
ow

er
 B

ou
nd

Remaining Pairwise Connectivitity - β (percent)

CAIDA AS
Oregon AS

Gnutella P2P

Figure 2-6. Lower bounds on the number of link-attack for real networks found with the
LMB algorithm.

50

CHAPTER 3
MULTIPLE NODE ATTACKS

3.1 Bicriteria Approximation Algorithm for β-vertex Disruptor

We present a polynomial time algorithm (Algorithm 3) that finds a β′-vertex disruptor

in the directed graph G(V,E) whose the size is at most O(log n log log n) times the

optimal β-vertex disruptor where 0 < β < β′2. The algorithm involves in two phases. In

the first phase, we split each vertex v ∈ V into two vertices v+ and v− while putting an

edge from v− to v+ and show that removing v in G has the same effects as removing

edge (v+ → v−) in the new graph. In the second phase, we try to decompose the

new graph into SCCs capping the sizes of the largest component while minimizing the

number of removed edges. We relax the constraints on the size of each component until

the set of cut edges induces a β′-vertex disruptor in the original graph G.

Given a directed graph G(V,E) for which we want to find a small β′-vertex disruptor,

we split each vertex in G into two new vertices to obtain a new directed graph G′(V ′, E ′)

where

V ′ = { v−, v+ | v ∈ V }

E ′ = {(v− → v+) | v ∈ V }

∪ {(u+ → v−) | (u→ v) ∈ E}

The new graph G′(V ′, E ′) will have twice the number of vertices in G i.e. |V ′| = 2|V | =

2n. An example for the first phase is shown in Figure 3-1.

We set the costs of all edges in E ′
V = {(v− → v+) | v ∈ V } to 1 and other

edges in E ′ to +∞ so that only edges in E ′
V can be selected in an edge disruptor set.

In implementation, it is safe to set the costs of edges not in E ′
V to O(n) noting that by

paying a cost of 2n we can effectively disconnect all edges in E ′
V .

Consider a directed edge disruptor set D′
e ⊂ E ′ that contains only edge in E ′

V .

We have a one-to-one correspondence between D′
e to a set Dv = {v | (v− → v+) ∈

51

Algorithm 5. β′-vertex disruptor

Input:Directed graph G = (V,E) and fixed 0 < β′ < 1.

Output:A β′-vertex disruptor of G

1. G′(V ′, E ′)← (ϕ, ϕ)

2. ∀v ∈ V : V ′ ← V ′ ∪ {v+, v−}
3. ∀v ∈ V : E ′ ← E ′ ∪ {(v− → v+)}, c(v−, v+)← 1

4. ∀(u→ v) ∈ E : E ′ ← E ′ ∪ {u+ → v−}, c(u+, v−)←∞
5. β ← 0, β ← 1

6. DV ← V (G)

7. while (β − β > ϵ) do

8. β̃ ← ⌊β + β

2ϵ
⌋ × ϵ

9. Find De ⊂ E ′ to separate G′ into strongly connected

components of sizes at most β̃|V ′| using algorithm in [37]

10. Dv ← {v ∈ V (G) | (v+ → v−) ∈ De}
11. if P(G[V \Dv]) ≤ β

(
n
2

)
then

12. β = β̃

13. Remove nodes from Dv as long as P(G[V \Dv]) ≤ β
(
n
2

)
14. if |DV | > |Dv| then DV = Dv

15. else β = β̃

18.end while

19. Return DV

D′
e} in G(V,E) which is a vertex disruptor set in G. Since G and G′ have different

maximum pairwise connectivity, (n−1)n
2

for G and (2n−1)2n
2

for G′, the fractions of pairwise

connectivity remaining in G and G′ after removing Dv and D′
e are, however, not exactly

equal to each other.

In the second phase of Algorithm 3, when separating a graph into SCCs, the

smaller the sizes of SCCs, the smaller pairwise connectivity in the graph. However,

the smaller the maximum size of each SCC, the more edges to be cut. We perform

binary search to find a right upper bound for size of each SCC in G′. In the algorithm,

52

the lower bound and upper bound of the size of each SCC are denoted by β|V ′| and

β|V ′| respectively. At each step we try to find a minimum capacity edge set in G′(V ′, E ′)

whose removal partitions the graph into strongly connected components of size at

most β̃|V ′|, where β̃ = ⌊β + β

2ϵ
⌋ × ϵ. We round the value of β̃ to the nearest multiple of

ϵ so that the number of steps for the binary search is bounded by log 1
ϵ
. The problem

of finding a minimum capacity edge set to decompose a graph of size n into strongly

connected components of size at most ρn is known as ρ-separator problem. We use

here the algorithm presented in [37] that for a fixed ϵ > 0 finds a ρ-separator in directed

graph G whose value is at most O
(

1
ϵ2
. log n log log n

)
times Opt(ρ−ϵ)-separator where

Opt(ρ−ϵ)-separator is the cost of the optimal (ρ − ϵ)-separator. Finally, we derive the cut

vertices in G from the cut edges in G′ to obtain the β′-vertex disruptor.

Lemma 5. Algorithm 3 always terminates with a β′-vertex disruptor.

Proof. We show that whenever β̃ ≤ β′ then the corresponding Dv found in Algorithm 3

is a β′-vertex disruptor in G. Consider the edge disruptor D′
e in G′ induced by Dv. We

first show the mapping between SCCs in G[V \Dv] and SCCs in G′[E ′\D′
e], the graph

obtained by removing D′
e from G′. Partition the vertex set V of G into: (1) Dv: the set

of removed nodes (2) Vsingle: the set of nodes that are not in any cylcle i.e. they are

SCCs of size one (3)Vconnected: union of remaining SCCs that sizes are at least two, say

Vconnected =
⊎l
i=1Ci, |Ci| ≥ 2. Vertices in Vconnected belong to at least one cycle in G.

We have following corresponding SCCs in G′[E ′\D′
e]:

1.v ∈ Dv ↔ SCCs {v+} and {v−}. Since after removing (v− → v+) v+ does not have
incoming edges and v− does not have outgoing edges.

2.v ∈ Vsingle ↔ SCCs {v+} and {v−}. Since v does not lie on any cycle in G. Assume
v+ belong to some SCC of size at least 2 i.e. v+ lies on some cycle in G′. Because
the only incoming edge to v+ is from v−. It follows that v− is preceding v+ on that
cycle. Let u−, u+ be the successive vertices of v+ on that cycle. We have u and v
belong to a same SCC in G which yields a contradiction. Similarly, v− cannot lie on
any cycle in G′.

53

3.SCC Ci ⊂ Vconnected ↔ SCC C ′
i = {v−, v+ | v ∈ Ci}. This can be shown using a

similar argument to that in the case v ∈ Vsingle.

Since D′
e is a β̃-separator, the sizes of SCCs in G′[E ′\D′

e] are at most β̃ 2n. It

follows that the sizes of SCCs in G[V \Dv] are bounded by β̃n. Denote the set of SCCs in

G[V \Dv] by C with the convention that vertices in Dv become singleton SCC in G[V \Dv].

Therefore, we have:

P(G[V \Dv]) =
∑
Ci∈C

(
|Ci|
2

)
=

1

2

(∑
Ci∈C

|Ci|2 − |V |

)

≤ 1

2

(∑
Ci∈C

β̃|V |)|Ci| − |V |

)

=
1

2

(
β̃|V |2 − |V |

)
≤ β̃

(
|V |
2

)
< β′

(
|V |
2

)
This guarantees that the binary search always finds a β′-vertex disruptor and completes

the proof.

Theorem 3.1. Algorithm 3 always finds a β′-vertex disruptor whose the size is at most

O(log n log log n) times the optimal β-vertex disruptor for β′2 > β > 0.

Proof. It follows from the Lemma 5 that Algorithm 3 terminates with a β′-vertex disruptor

Dv. At some step the capacity of Dv equals to the capacity of β̃-separator D′
e in G′

where β̃ is at least β′ − ϵ according to Lemma 5 and the binary search scheme. The

cost of the separator is at most O (log n log log n) times the Opt(β̃−ϵ)-separator using the

algorithm in [37].

Consider an optimal (β′2 − 9ϵ)-vertex disruptor D′
v of G and its corresponding edge

disruptor D′
e in G′. Denote the cost of that optimal vertex disruptor by Opt

(β′2−9ϵ)-VD. If

there exists in G[V \Dv] a SCC Ci so that |Ci| > (β′ − 2ϵ)n then P(G[V \Dv]) >
1
2
((β′ −

2ϵ)n− 2)((β′ − 2ϵ)n− 1) > (β′2 − 9ϵ)
(
n
2

)
when n > 20(β′+1)

ϵ
. Hence, every SCC in G′

[V \D′
v]

have size at most (β′ − 2ϵ)(2n) i.e. D′
e is an (β′ − 2ϵ)-separator in G′. It follows that

Opt
(β′2−9ϵ)-VD ≥ Opt(β′−2ϵ)-separator in G′.

54

u+ v+

u v

1 1

u-
v-

1 1

w

w+

1

(a) (b)
w-

Figure 3-1. Conversion from the node version in a directed graph (a) into the edge
version in a directed graph (b)

Since β̃ − ϵ ≥ β′ − 2ϵ, we have Opt(β̃−ϵ)-separator ≤ Opt(β′−2ϵ)-separator ≤

Opt
(β′2−9ϵ)-VD.

The size of the vertex disruptor |Dv| = |D′
e| is at most O (log n log log n) times

Opt(β̃−ϵ)-separator. Thus, the size of found β′-vertex disruptor Dv is at most O(log n log log n)

times the optimal (β′2 − 9ϵ)-vertex disruptor. As we can choose arbitrary small ϵ, setting

β = β′2 − 9ϵ completes the proof.

Time complexity : Finding the separator costs O(n9) [37]. Hence, the total time

complexity is O(log 1
ϵ
n9). However, in our experiments, the algorithm takes much less

than its worst-case running time.

3.2 Connection between Edge Disruptor and Vertex Disruptor

We show that an approximation algorithm for general directed edge disruptor

yields an approximation algorithm for directed vertex disruptor with (almost) the same

approximation ratio.

Lemma 6. A β-edge disruptor set in the directed graph G′ induces the same cost

β-vertex disruptor set in G.

Proof. We use Dv and D′
e for vertex disruptor in G and edge disruptor in G′.

Given P(G′[E ′\D′
e]) ≤ β

(
2n
2

)
we need to prove that: P(G[V \Dv]) ≤ β

(
n
2

)
where

n = |V |.

55

Assume G[V \Dv] has l SCCs of size at least 2, say Ci, i = 1 . . . l. The corresponding

SCCs in G′[E ′\D′
e] will be C ′

i, i = 1 . . . l where |C ′
i| = 2|Ci|.

Since (2k2)
(2n2)
− (k2)

(n2)
= k(n−k)

(n−1)n(2n−1)
≥ 0, for all 0 ≤ k ≤ n. We have

P(G[V \Dv])

(n2)
=

l∑
i=1

(|Ci|
2

)(
n
2

) ≤ l∑
i=1

(|C′
i|
2

)(
2n
2

) ≤ β

Lemma 7. A β-vertex disruptor set in G induces the same cost (β + ϵ)-edge disruptor

set in G′ for any ϵ > 0.

Proof. We use the same notations in the proof of Lemma 6. Given P(G[V \Dv]) ≤ β
(
n
2

)
we

need to prove that: P(G′[E ′\D′
e]) ≤ (β + ϵ)

(
2n
2

)
. We have:

P(G′[E ′\D′
e])(

2n
2

)
=

l∑
i=1

|Ci|(n− |Ci|)
(n− 1)n(2n− 1)

+
P(G[V \Dv])(

n
2

)
=
P(G[V \Dv])(

n
2

) (
1− 1

2n− 1

)
+

∑l
i=1 |Ci|

n(2n− 1)

< β +
1

2n− 1
< β + ϵ (3–1)

when n ≥ ⌊1+ϵ
2ϵ
⌋+ 1.

Theorem 3.2. Given a factor f(n) polynomial time approximation algorithm for β-edge

disruptor, there exists a factor (1 + ϵ)f(n) polynomial time approximation algorithm for

β-vertex disruptor where ϵ > 0 is an arbitrary small constant.

Proof. Let G be a directed graph with uniform vertex costs in which we wish to find a

β-vertex disruptor. Construct G′ as described at the beginning of this Section.

Apply the given approximation algorithm to find in G′ a β-edge disruptor, denoted by

D′
e, with the cost at most f(n) ·Optβ−ED(G

′), where Optβ−ED(G
′) is the cost of a minimum

β-edge disruptor in G′. From Lemma 6, D′
e induces in G a β-vertex disruptor Dv of the

same cost. We shall prove that

Optβ−ED(G
′) ≤ Optβ−VD(G) + γ0,

56

where Optβ−VD(G) is the cost of a minimum β-vertex disruptor in G and γ0 is some

positive constant. It follows that the cost of Dv will be at most

f(n) · (Optβ−VD(G) + λ0) ≤ (1 + ϵ)f(n)Optβ−VD(G)

Here, we assume that Optβ−VD(G) >
γ0
ϵ

otherwise we can find Optβ−VD(G) in time

O(n
γ0
ϵ
+2).

From an optimal β-vertex disruptor of G, construct its corresponding edge disruptor

D∗
e in G′. If P(G′[E \D∗

e] ≤ β
(
2n
2

)
then Optβ−ED(G

′) ≤ Optβ−VD(G) and we yield the

proof. Thus, we consider the case P(G′[E \D∗
e] > β

(
2n
2

)
.

Among SCCs of G′[E \D∗
e], there must be a SCC of size at least β2n or else

G′[E \D∗
e] ≤ β−1

(
β2n
2

)
≤ β

(
2n
2

)
(contradiction). Remove γ0 =

⌈
1
β

⌉
vertices from that SCC.

The pairwise connectivity in G′[E \D∗
e] will decrease at least (β2n − 1

β
) 1
β
= 2n − 1

β2 ≥ n

for sufficient large n. From Eq. 3–1 in Lemma 7, the pairwise connectivity after removing

vertices will be less than

(β +
1

2n− 1
)

(
2n

2

)
− n ≤ β

(
2n

2

)
Therefore, after removing at most γ0 vertices from D∗

e , we get a β-edge disruptor.

Hence,

Optβ−ED(G
′) ≤ Optβ−VD(G) + γ0.

3.3 Branch-and-cut Algorithm

Branch-and-cut methods have proven to be a very successful approach for solving a

wide variety of integer programming problems. In contrast with meta-heuristics, they can

guarantee optimality. They combine a branch-and-bound algorithm with a cutting plane

method that is used to improve the solution of the linear programming relaxations.

This section presents components of our branch-and-cut algorithm. We begin

with a new lightweight mixed integer programming formulation for β-vertex disruptor

in Subsection 3.3.2. In the next subsection, we introduce a new class of strong cutting

57

planes and the separation procedure to find such cutting planes. The primal heuristics

that provides upper bounds for pruning during the search process is presented in

Subsection 3.3.4.

3.3.1 Mixed Integer Programming Formulation

We model the network as an undirected graph G = (V,E) of n nodes numbered

from 1 to n; the degree of node 1 ≤ i ≤ n is denoted by d(i). The pairwise connectivity

of G, denoted by P(G) is the number of node pairs with at least one path between them.

For example, if G is connected, then P(G) =
(
n
2

)
.

Given a positive constant 0 ≤ β ≤ 1, a subset of vertices S ⊂ V in G is a β-vertex

disruptor if the subgraph G[V \S], induced by V \ S in G, has pairwise connectivity at most

β
(
n
2

)
. The β-edge disruptor problem asks to find a β-vertex disruptor of the minimum

size.

The problem can be generalized so that each node u ∈ V has a cost w(u)

of removing and we wish to find a β-vertex disruptor of the minimum cost. This

generalization is straightforward and shall be ignored to simplify the presentation.

The IP formula for β-vertex disruptor (IPvd) is as follow

minimize
n∑
i=1

si (3–2)

subject to dij ≤ si + sj, (i, j) ∈ E, (3–3)

dij + djk ≥ dik, ∀i ̸= j ̸= k (3–4)∑
i<j

dij ≥ (1− β)
(
n

2

)
, (3–5)

si ≤ dij, i ̸= j (3–6)

si, dij ∈ {0, 1}, i, j ∈ [1..n] (3–7)

58

We use variable dij to represent the “distance” between a pair of nodes i and j in the

residual network i.e.

dij =

 0 if i and j are in the same connected component

1 otherwise.

An extra variable si is used for each node i ∈ V , where

si =

 0 if node i is not removed

1 if i is removed (selected into the disruptor.)

The objective minimizes the total number of removed nodes i.e. the size of the

vertex disruptor. Note that dij = dji ∀(i, j) ∈ V × V . Constraint (4–3) is the

well-known triangle inequality which implies that if i and j are connected, and j and

k are connected, then i and k must be connected. Constraint (4–4) limits the pairwise

connectivity in G to be at most β
(
n
2

)
.

Constraint (4–2) implies the base case that if i and j are neighbors and neither i or

j is removed (si = sj = 0), then i and j remain connected i.e. dij = 0. Constraint (4–5)

states the fact that a removed node will not connect to any other nodes (si = 1 → dij =

1).

There are several drawbacks with the IP formula of the β-vertex disruptor problem

(IPvd) (and also formulations of k-CND and k-CED [10]). A large number of integral

variables, Θ(n2), makes the selection of branching difficult and significantly increases

the depth and size of the search tree. In addition, excessive number of constraints,

Θ(n3), even for small sized instances leads to a large linear programming relaxation that

consumes an extremely large amount of memory and computing time.

3.3.2 Sparse Metric Technique

We first devise a new Mixed-Integer Programming (MIP) formulation for the β-vertex

disruptor problem that consists of only n integer variables and much smaller number

of constraints. Since the only role of triangle inequalities is to guarantee dij to be a

59

pseudo-metric (as defined later in the proof of Theorem 3.3), we introduce a compact

subset of inequalities, so-called sparse metric, that guarantees the same pseudo-metric

property. When the network is sparse i.e. |E| ∝ |V |, the number of constraints reduces

substantially from Θ(n3) to Θ(n2).

Our new MIP formulation for the β-vertex disruptor problem (MIPvd) is similar to IPvd

except in places of constraints (4–3) and (5–9) as presented below.

dij + djk ≥ dik, k ∈ Nmin(i, j) (3–8)

dij ∈ [0, 1], i, j ∈ [1..n], (3–9)

where Nmin(i, j) is the set of neighbors of i excluding j if d(i) < d(j), and Nmin(i, j) is

the set of neighbors of j excluding i, otherwise. We also drop the integral requirements

on dij i.e. replace the constraints dij ∈ {0, 1} with dij ∈ [0, 1]. However, the integrality of

s1, s2, . . . , sn remains.

Note that there are exactly n integer variables s1, s2, . . . , sn. In addition, the number

of constraints is upper bounded by

|E|+
∑
i<j

min {d(i), d(j)}+ n(n− 1)

2

≤n2 +
∑
i<j

d(i) + d(j)

2
= n2 +

n− 1

2

n∑
i=1

d(i) = O(mn)

Hence, the number constraints is substantially less than O(n3) for complex networks that

are often sparse.

We proceed to prove the equivalence of the compact formulation MIPvd to IPvd by

showing the following

• The integrality constraints on dij ∀i, j are in fact redundant (Proposition 3.1).

• The optimal solutions of MIPvd also induce optimal β-vertex disruptor in G
(Theorem 3.3).

60

• The optimal fractional solution of LP relaxation of IPvd can be found by solving the
(smaller) LP relaxation of MIPvd, following by an O(mn+ n2 log n) tuning procedure
(Theorem 3.4).

Proposition 3.1. For every optimal solution of MIPvd, there is a feasible solution of the

MIP with the same objective value in which all variables are integral.

Proof. Round all dij > 0 to 1. This will not violate constraints (4–5) and (4–4). For

constraints (4–2), if dij is rounded up to 1 then the integrality of si, sj implies si + sj ≥ 1,

or else if dij = 0 then the constraints are still satisfied. Assume the rounding violates

constraints (3–8) for some triple (i, j, k). This happens if and only if dik = 1 and

dij = djk = 0. Hence, before rounding, dik > 0 and dij = dj,k = 0 that contradicts the

constraint dij + djk ≥ dik. It follows that rounding gives a feasible integral solution to the

MIP.

Let DMIP = { i | si = 1} be the disruptor induced by the optimal solution of MIPvd

and OPTβ
vd be an optimal β-vertex disruptor.

By setting si = 0 ∀i ∈ OPTβ
vd and dij = 0 for all i, j in a same connected component

of G[V \OPTβ
vd]

and dij = 1 if not, we yield a feasible solution for MIPvd. Therefore,

|DMIP| ≤ |OPTβ
vd|

Theorem 3.3. The optimal solution DMIP = { i | si = 1} obtained by solving MIPvd is a

minimum β-vertex disruptor of G.

Proof. Since |DMIP| ≤ |OPTβ
vd|, we only need to show that DMIP is a β-vertex disruptor.

Assume that we can prove that dij = 0 for every connected pairs (i, j) in G[V \DMIP].

Then, only disconnected pairs di′j′ will contribute to the sum in constraint (4–4). Since

di′j′ ≤ 1 ∀i, j ∈ [1..n], the number of disconnected pairs must be at least (1 − β)
(
n
2

)
. It

will follow that DMIP is a β-vertex disruptor.

Hence, the rest of the proof is to show that dij = 0 for every connected pairs (i, j) in

G[V \DMIP].

61

Note that d is a pseudo-metric, i.e., the function d(i, j) = dij satisfy:

• Non-negativity: d(i, j) ≥ 0

• Identity: d(i, i) = 0

• Symmetry: d(i, j) = d(j, i)

• Subadditivity: d(i, j) ≤ d(i, k) + c(k, j).

For each connected pair (i, j) in G[V \DMIP], we prove that dij = 0 by induction on the

length t of the shortest path (in number of hops) between nodes i and j.

The basis. The statement holds for t = 1. By constraint (4–2), if (i, j) ∈ E and i, j

are connected in G i.e. si = sj = 0, then dij ≤ si + sj = 0. Since dij ≥ 0, it follows that

dij = 0.

The inductive step. Assume that the statement holds for t = t′, we show that

the statement is also true for t = t′ + 1. Let i, j be some pairs connected with a path

of length at most t′ + 1. Since removing all nodes in Nmin(i, j) disconnects i from j,

the path between i and j must pass through some node k ∈ Nmin(i, j). In addition,

the shortest paths from i to k and from k to j have lengths at most t′. Thus, by the

induction hypothesis we have dik = dkj = 0. It follows from the constraint in (3–8) that

dij ≤ dik + dkj = 0. Thus, the statement holds for all t > 0.

Finally, we show the relationship between the LP relaxation of IPvd and that of

MIPvd.

Theorem 3.4. The optimal solution of the LP relaxation IPvd can be found by solving the

LP relaxation of MIPvd, following by an O(mn+ n2 log n) tuning procedure.

Proof. Let (s, d) be an optimal fraction solution of the LP relaxation of MIPvd. Associate

a weight dij for each edge (i, j) ∈ E. Let d′ij be the shortest distance between two nodes

(i, j) with the new edge weights. We have

• d′ij ≥ dij for all i, j and d′ij = dij∀(i, j) ∈ E.

• d′ij = minnk=1{d′ik + d′kj}. Hence, d′ij is a pseudo-metric.

62

The first statement can be shown by the same induction in the proof of Theorem 1. The

second statement comes from the definition of d′ij.

Furthermore, we define d∗ij = min{d′ij, 1}. If we use the Johnson’s algorithm [27]

to compute all pairs shortest paths d′ij, the time complexity to construct d∗ij from dij is

O(mn + n2 log n). We shall prove that (s, d∗) is a feasible solution of IPvd by showing that

(s, d∗) satisfies all constraints in IPvd.

By definition, we have d∗ij = min{d′ij, 1} ≥ min{dij, 1} = dij ∀i, j and d∗ij = dij ∀(i, j) ∈

E. Thus, for all (i, j) ∈ E, d∗ij = dij ≤ si + sj.

In addition, d∗ is also a pseudo-metric as d∗ik+d
∗
kj ≥ min{d′ik+d′kj, 1} ≥ min{d′ij, 1} =

d∗ij. From d∗ij ≥ dij, we have
∑

i,j d
∗
i,j ≥

∑
i,j di,j ≥ β

(
n
2

)
and si ≤ dij ≤ d∗ij. Thus, (s, d∗) is

a feasible solution of IPvd.

Obviously, the minimum objective of the LP relaxation of MIPvd is smaller or equal

to that of IPvd. Since, the objective values associate with (s, d∗) and (s, d), a minimum

solution of the LP relaxation of MIPvd, are the same, (s, d∗) must be a minimum solution

of the LP relaxation of IPvd.

3.3.3 Cutting Planes

We present a class of strong cutting planes together with the separation procedure

to identify those cutting planes. These can be used in conjunction with cutting planes

generated automatically by optimization packages to improve the convergence of the

branch-and-cut algorithm.

3.3.3.1 Vertex-Connectivity and Invalid Inequalities

One often overlooked characteristic of solutions for clustering and partitioning

problems on graph is that clusters must induce connected subgraph. This characteristic

is not reflected in either IPvd or MIPvd formulations.

A subset S ⊂ V is a vertex-cut for a pair (u, v), if removing S from graph G,

disconnect s and t. For all vertex-cut S of (u, v), if
∑

i∈S si = |S|, then duv must be one.

63

Thus, we have VC inequality ∑
i∈S

si − duv ≤ |S| − 1

This inequality is valid for all feasible points inside the polyhedra of MIPvd.

Algorithm 6. Separation procedure for VC inequalities

1: for each pair (u, v) ∈ V × V do

2: Construct a flow network G = (V,E) as follows

3: Assign u and v as source and sink, respectively

4: Each node k ∈ V has capacity s̄k
5: Every edge has capacity∞
6: if (u, v) ∈ E, then (u, v) has capacity zero.

7: Find the maximum-flow (min-cut)

8: if maximum-flow is less than d̄uv, then

9: Find the min vertex-cut S

10: Add the VC inequality associated with S to MIP

8: end if

11: end for

3.3.3.2 Separation Procedure for VC Inequalities

Given a point (fractional solution) (s, d) ∈ R(
n+1
2), an exact separation algorithm

for some class of inequalities either finds a member of the class violated by (s, d), or

proves that no such member exists. In many cases, finding such algorithm is intractable

(NP-hard problem) and one has to settle for heuristic procedures. Fortunately, there is

an exact algorithm for our separation procedure based on finding the max-flow on the

network with node capacities.

The VC inequality can be rewritten as

∑
i∈S

s̄i − d̄uv ≥ 0, S is any vertex-cut of (u, v)

where s̄i = 1− si and d̄uv = 1− duv.

64

Algorithm 7. Sharpest Decreasing Vertices (SDV)

1: Start with some β-vertex disruptor D ⊆ V .

2: Repeat

3: while (true) do

4: u = argmin
v∈D

{P(G[V \(D∪{v})])}

5: if (D \ {u} is a β-disruptor) then D = D \ {u}
6: for each (w ∈ V \ D) do

7: Dw = D ∪ {w}
8: u = argmin

v∈D
{P(G[V \(Dw∪{v})])}

9: +if (u ̸= w) then D = Dw ∪ {u}
10: Until (D not changing)

11: Output D.

Therefore, the point (s, d) violates this inequality if and only if
∑

i∈S s̄i < d̄uv.

The most violated inequality is the one that minimize the sum
∑

i∈S s̄i, given S is a

vertex-cut of (u, v). Thus, the subset S corresponding to the most violated inequalities

can be found using minimum capacitated vertex-cut of (u, v). The separation procedure

is described in Algorithm 1. Here, we need to solve the maximum-flow (min-cut)

problem in networks with both node and edge capacities. If we apply Push-relabel

algorithm with dynamic trees [42], the time complexity to find cutting planes for one

node pair is O(mn log n2

m
). The total time complexity for the separation procedure will be

O(n3m log n2

m
). In our implementation, this procedure is called sparingly in order to avoid

excessive running time.

3.3.4 Primal Heuristic

The search for an optimal solution in a branch and cut algorithm can be accelerated

by obtaining a high quality feasible solution to provide upper bounds for pruning

other subproblems. We present a heuristic that rounds the fractional solution of MIP

relaxations to get integral solutions.

Let (s, d) be a fractional solution of an LP relaxation. We first sort si in non-decreasing

order si1 ≤ si2 ≤ . . . ≤ sin. Then we round down all si1 , si2 , . . . , sik to zero and round

65

up sik+1
, sik+2

, . . . , sin to one, where k runs from 1 to n. If the obtain solution is a β-vertex

disruptor, a local search method described in Algorithm 2 is then used to refine the

solution. The local search method refines the solution by repeatedly:

• Removing node(s) from the disruptor if possible

• Swapping a node w outside the disruptor with a node u in the disruptor that gives
the sharpest decrease in connectivity.

The local search terminates when no improvement exists.

3.4 Experimental study

We perform experiments to find out the gap between the solution of the pseudo

approximation algorithm (Algorithm 3) and an optimal solution found by solving an

Integer programming formulation. We generate two types of network: random networks

following Erdos-Rényi model and power-law networks following Barabási-Albert model.

For each type of network, we generate different instances with number of nodes ranging

from 30 to 100. Edge densities of generated networks are around 10%. The machine

used for the experiments was an 8 cores 2.2 Ghz equipped with 64 GB memory.

Size of disruptors found by Algorithm 3 and the size of optimal disruptors are

presented in Tables 3-1 and 3-2. Despite a large theoretical gap of the pseudo

approximation algorithm, the algorithm produces near-optimal solutions and returning

optimal solutions in more than half places (marked with bold numbers).

Especially, our algorithm performs extremely well on power-law networks. It misses

the optimal solution in only one place when the number of vertices is 90. Between a

random network and a power-law network of roughly same sizes, the size of disruptor

in the power-law network is significantly smaller (approximately 50%) than that in the

random network, showing extremely high degree of vulnerability of power-law network to

attacks [7].

66

Table 3-1. Size of disruptor on Erdos-Rényi networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 43 78 122 177 241 316 400 495

Optimal 2 4 7 9 11 12 16 18
Approx 3 4 8 9 11 13 16 19

Table 3-2. Size of disruptor on Barabási–Albert networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 54 131 189 208 245 262 354 445

Optimal 1 3 5 6 6 5 7 9
Approx 1 3 5 6 6 5 10 9

 100

 200

 300

 400

 500

 600

0 % 20 % 40 % 60 % 80 % 100 %

C
os

t o
f v

er
te

x
di

sr
up

to
r

Network connectivity level

Degree Centrality
Eigenvector Centrality

Rounding LP

Figure 3-2. Disruptors found by different methods in the Western States Power Grid of
the United States at different levels of disruption.

67

Pajek

A 70% connectivity

Pajek

B 50% connectivity

Pajek

C 30% connectivity
Pajek

D 10% connectivity

Figure 3-3. Disruptors found by different methods in the Western States Power Grid of
the United States at different levels of disruption.

68

The running time for solving the Integer programming increases from few minutes to

10 hours for the largest test cases, while in the longest run, the pseudo-approximation

algorithm takes only 29 seconds.

3.4.1 Performance of the Branch-and-cut Algorithm

Vertex Edge β
Removed Time (seconds) Constraint

vertex IPvd MIPvd IPvd MIPvd

50 141 60.0% 4 63 8 60, 167 4, 861
150 286 1.0% 18 19, 788 2 1, 665, 362 31, 887

- - 5.0% 15 18, 070 7 - 32, 161
- - 8.0% 12 n/a 73 - 33, 242
- - 10.0% 11 n/a 1, 363 - 39, 615
- - 20.0% 9 n/a 1, 737 - 39, 313
- - 40.0% 7 n/a 2, 149 - 42, 830
- - 60.0% 5 n/a 1, 610 - 38, 458
- - 90.0% 2 26, 277 147 - 34, 321

200 387 60.0% 8 n/a 64, 860 3, 960, 488 72, 980
600 1, 166 0.5% 69 n/a 48, 918 107, 641, 467 516, 656

1000 1, 959 0.5% 198 n/a 747 499, 340, 027 1, 437, 326

Table 3-3. Comparisons of IPvd and MIPvd on power-law networks

We implement our branch and cut algorithm using GUROBI 4.0 on a computer with

Intel Xeon 2.93 Ghz processor and 12 GB memory. Table 3-3 shows results for IPvd and

our new branch and cut algorithm (MIPvd) on power-law networks [12] of various sizes.

We report for each disruption level β, the number of removed vertices in the optimal

solution, the number of Rows (constraints), Nonzeros (nonzero coefficients), and solving

time.

As shown in Table 3-3, our branch-and-cut algorithm utilizing sparse metric

technique and strong cutting planes is substantially faster and more memory-efficient

than the original branch-and-cut equipped in GUROBI MIP solver. The speed up factor

is from 8 times for 50 nodes to several thousand times for larger instances. For the

69

network of 150 nodes, MIPvd often takes less than 30 minutes, while IPvd runs out of

memory or does not terminate after 100,000 seconds (noted with n/a).

3.4.2 Case study: Western States Power Grid

We study a network of 4941 nodes and 6594 edges representing the topology

of the Western States Power Grid of the United States. The network is shown to be

high clustering with small characteristics path lengths [79]; hence the network is rather

vulnerable to targeted attacks.

It is intractable to find the optimal disruptor using Integer Programming for such a

large network. Our approximation algorithm uses row-generation technique to reduce

excessive amount of constraints and runs on a clusters of 20 nodes, each node is

equipped with an 8 cores 2.2 Ghz CPU and 64 GB memory.

We compare the attack schemes that target nodes based on their centrality with our

pseudo approximation algorithm to show that those methods might not be suitable to

reveal network vulnerability in term of overall network connectivity. Compared methods

include

1. Degree Centrality : The algorithm sequentially remove node with the maximum
degree until the pairwise connectivity in the graph less than β

(
n
2

)
.

2. Betweenness Centrality : We repeatedly remove the node with maximum
betweenness centrality, until the pairwise connectivity in the graph less than
β
(
n
2

)
. Recall that the betweenness Bt(v) for node v is: Bt(v) =

∑
s̸=v ̸=t∈V

s̸=t

σst(v)
σst

where σst is the number of shortest paths from s to t, and σst(v) is the number of
shortest paths from s to t that pass through a node v.

3. Eigenvector Centrality : Nodes are removed in descending order of their Eigenvector
centrality (Pagerank) values with the default damping factor of 85% as in [65].

We show in Figure 3.4 vulnerability reported by different methods at various levels

of disruption. The network is surprisingly vulnerable to targeted attacks. For example

to reduce 40% connectivity in the network (60% connectivity remain) we only need to

destroy 0.16% stations. Bringing down the connectivity to the same level, the average

number of nodes to remove for random networks and power-law networks are 13%

70

and 3% respectively. Even destroying only 1% of stations can dramatically disrupt 90%

connectivity in the network.

None of other methods can reveal correctly the vulnerability of the power grid. Their

disruptor sizes are 6 to 20 times larger than those of our approximation algorithm. Thus,

using alternative assessment methods rather than the ones we proposed might lead to a

dangerous mirage that the network is strongly stable.

Because of high clustering property, nodes that lie among clusters in the networks

will often have high betweenness values. Intuitively, we expected the betweenness

method to easily identify those nodes and perform well in the experiment. Surprisingly,

the performance of betweenness method turns out to be even worse than that of degree

centrality.

We visualize the network fragmentation at varied disruptive levels in Figures

3-3C and 3-3D. Disruptor separates the network into large connected components.

We observe that not all nodes in the disruptor at the 30% connectivity level are in the

disruptor at 10% level. Hence, we cannot assume nodes in the disruptor at the lower

levels is the superset of nodes in that at the higher level. It explains why centrality

assessment methods in which nodes are selected in a fixed order fail to exhibit the

vulnerability of the network at different disruptive levels.

71

CHAPTER 4
JOINT LINK AND NODE ATTACKS

A Node attack B Link attacks C Link-node attack

Figure 4-1. A) After removing nodes 1 and 2 with highest degree, the network remains
connected and the pairwise connectivity reduces only 35%. As shown in a.,
the solution that minimizes the connectivity (nodes 3 and 7) effectively
breaks the network into two parts, disrupting 67% connectivity. B) Minimum
cost solutions to reduce 50% of the connectivity assuming links have cost 2
and nodes have cost 3 a. node only & b. link only c. joint nodes & links. The
minimum cost is 6 if attacking only nodes or only links, and is 5 if both links
and nodes are targeted. Thus, it is insufficient to study node and link attacks
separately.

We begin with a network sample that show the advantage of the pairwise connectivity

metric over the node centrality measures in Fig. 4-1A. Assume two nodes are to be

removed from our simple example. If the two nodes are selected according to their

degree centrality, nodes 1 and 2 will be removed and the network remains connected.

However, if we remove nodes to minimize the pairwise connectivity, nodes 3 and 7 are

going to be targeted, and the network is effectively broken into two smaller components.

The fraction of pairwise connectivity in the residual network, denoted by β, reduces

72

drastically to β = 18
55
≈ 33%. Apparently, optimizing the pairwise-connectivity metric

reveals more accurate insights on the network vulnerability.

Fig. 4-1 also illustrates a fundamental shortcoming of existing work: the ability to

assess network vulnerability under joint node and link attacks. The three sub-figures

show the minimum cost attack strategies to reduce β = 50% pairwise connectivity,

assuming each link has cost 2 and each node has cost 3. While the minimum costs

for both node-attack (Fig. 4-1A) and link-attack (Fig. 4-1B) are 6, the minimum cost for

node-link attacks (node 3 and link (6, 7)) (Fig. 4-1C) is only 5. Thus, it is insufficient to

assess link vulnerability and node vulnerability separately when both links and nodes

in the network can be targeted. To make matters worse, assume node 3 and link (6, 7)

have the same cost ϵ > 0, the minimum costs for node, link, and node-link attacks will be

3 + ϵ, 4 + ϵ, and 2ϵ, respectively. As the ratios (3 + ϵ)/(2ϵ) and (4 + ϵ)/(2ϵ) go unbounded,

the existing methods can seriously misjudge the network vulnerability.

To address the shortcoming, we study the effect of joint node and link attacks

in term of connectivity. We introduce a new problem, called β-disruptor, that finds a

minimum cost set of nodes and links whose removal degrades the pairwise connectivity

to a great extent (a fraction β). The β-disruptor problem aims to provide a more

comprehensive assessment on network vulnerability. It generalizes both the β-vertex

disruptor and the β-edge disruptor problems proposed in our previous work [33]. To our

best knowledge, this is the first work to address the effect of simultaneous attacks on

both links and nodes on network connectivity.

Our contributions are summarized as follows

• Providing an underlying framework toward assessing vulnerability under joint n-
ode and link attacks and formulating it as an optimization problem β-disruptor.
Other performance measures such as the maximum flow between a given
source-destination pair, the average maximum flow between pairs of nodes,
etc. can also be used in place of pairwise connectivity to define new problems.

• Our major result is an O
(√

log n
)

bicriteria approximation algorithm for both
undirected and directed networks. The algorithm finds a β-disruptor with the cost

73

at most O
(√

log n
)

times that of an optimal β′-disruptor, with β′ slightly less than
β. We propose an efficient heuristic using recursive spectral bisection and variable
neighborhood search. Finally, our experiments on both synthetic and real-world
datasets indicate the efficacy and scalability of our proposed algorithms.

We briefly present terminologies and problem definitions in Section 4.1. Then we

propose the O(
√
log n) bicriteria approximation algorithm for β-disruptor in Section 4.2.

Section 4.3 presents the efficient heuristic to find β-disruptor. We obtain numerical

results for the presented algorithms in Section 4.4.

4.1 Mixed Removal of Nodes and Links

Once again, we abstract our general network model as a graph G = (V,E), where

V refers to a set of nodes and E refers to a set of links. Each vertex u ∈ V is associated

with a cost c(u) ≤ 0 and each edge (u, v) ∈ E has a cost c(u, v) ≥ 0. For convenience,

we also denote the number of nodes and links by n and m, respectively.

If G is an undirected graph, a vertex pair (u, v) ∈ V × V is connected iff there

exists a path between u and v. If G is a directed graph, a vertex pair (u, v) is said to

be connected if there exist paths between u and v in both directions. We denote the

pairwise connectivity of a graph G by P(G). Apparently, the pairwise connectivity is

maximized at
(
n
2

)
when G is a (strongly) connected graph. For convenience, we use the

word component to refer to connected component in undirected graphs and strongly

connected component (SCC) in directed graphs whenever the context is clear.

β-disruptor. Given 0 ≤ β ≤ 1, a β-disruptor is a pair of subsets

Dβ = (Vβ ⊆ V,Eβ ⊆ E)

that removal from G will make the pairwise connectivity in the residual graph

G′ = (V \ Vβ, E \ (Eβ ∪ Vβ × Vβ)) to be at most β
(
n
2

)
. The β-disruptor problem asks for a

β-disruptor with the minimum total cost

c(Dβ) =
∑
u∈Vβ

c(u) +
∑
e∈Eβ

c(e).

74

There are two special types of β-disruptor: if Vβ = ∅, then Dβ is a β-edge disruptor ;

and if Eβ = ∅, then Dβ is a β-vertex disruptor. The uniform-cost versions of β-edge

disruptor problem and the β-vertex disruptor problem are previously studied in [32].

4.1.1 Mixed Integer Linear Programming

The β-disruptor can be formulated as an Mixed Integer Linear Programming (MILP)

problem as follows

minimize
n∑

u∈V

cusu +
∑
e∈E

c(e)xe (4–1)

subject to duv ≤ su + sv + xuv, (u, v) ∈ E, (4–2)

duv + dvw ≥ duw, (u, v) ∈ E,w (4–3)∑
u ̸=v

duv ≥ (1− β)
(
n
2

)
, (4–4)

su ≤ duv ≤ xuv, u, v (4–5)

su, xuv ∈ {0, 1}, duv ∈ [0, 1] u, v (4–6)

where su = 1 if node u is removed and su = 0 otherwise. Similarly, xuv = 1 indicates

the removal of edge (u, v). The variables duv represent the disconnectivity (or distance)

between nodes u and v in the residual network i.e. dij = 1 if i and j is disconnected and

duv = 0 otherwise. The following lemma states the correctness of our formulation. The

proof is similar to the case of the MILP for the β-vertex disruptor problem in [30], and is

omitted here.

Lemma 8. The optimal solution of ILP (5–8-5–9) induces a minimum cost β-disruptor

Dβ = (Vβ, Eβ) of G, where Vβ = {u | su = 1} and Eβ = {(u, v) | xuv = 1}.

4.1.2 Relation between edge costs and vertex costs

Since removing either u or v causes more disruption than removing the edge (u, v),

we have the following lemma.

Lemma 9. An edge (u, v) ∈ E with c(u, v) > min{c(u), c(v)} will not appear in any

optimal β-disruptor for any β ≥ 0.

75

The lemma reflects that vertices’ costs are often higher than the costs of incident

edges. Similarly, removing a vertex should not cost more than removing all the incident

edges.

Lemma 10. A vertex u with c(u) >
∑

(u,v)∈E c(u, v) will not appear in any optimal

β-disruptor for any β ≥ 0.

Lemmas 9 and 10 help us to exclude edges and vertices with “excessive” removal

costs from further consideration. From the perspective of protecting the critical

infrastructures, they provides relative caps for how much extra resource we should

allocate to the network elements.

By definition, β-vertex disruptor can be seen as a special case of β-disruptor when

all edges have infinity costs and β-edge disruptor is a special case of β-disruptor when

all vertices have infinity costs. Since both vertex and edge disruptor are NP-hard, the

β-disruptor problem is also NP-hard for 0 < β < 1.

4.2 Bicriteria Approximation Algorithm for Joint Link and Node Attacks

In this subsection, we present an O(
√
log n) bicriteria approximation algorithm for

the β-disruptor problem. Since β-vertex disruptor is a special case of β-disruptor, the

algorithm implies an O(
√
log n) bicriteria approximation algorithm for β-vertex disruptor,

which improve the best result for β-vertex disruptor, the O(log n log log n) bicriteria

approximation algorithm in [33].

4.2.1 Algorithm Description

We will refer to the input network as the original network. We first reduce the

β-disruptor problem in the original network to an instance of the β-edge disruptor

problem in an auxiliary directed graph. The reduction maps each undirected edge to

two alternating directed edges and each node to a surrogate edge. More importantly,

we show that the reduction ‘preserves’ relative performance guarantees. We then

apply a recursive cut procedure to find a near-optimal set of both alternating edges and

surrogate edges that correspond to a β-disruptor in the original network.

76

Our algorithm JLNA(G) to find β-disruptor in directed graph G is summarized in

Algorithm 8. In the first phase, the algorithm constructs an auxiliary graph G′ by splitting

each vertex v ∈ V into two new vertices v+ and v−. Formally, the set of vertices and

edges in G′ are defined as

V ′ = { v−, v+ | v ∈ V }

E′ = {(v−, v+) | v ∈ V } ∪ {(u+, v−) | (u, v) ∈ E}

In addition, we assign costs c′(.) for edges in G′: c′(v−, v+) = c(v) for the surrogate

edge (v−, v+) and c′(u+, v−) = c(v+, u−) = c(u, v) for alternating edges (u+, v−) and

(v+, u−). In the case, E is a mix of both undirected and directed edges, we also convert

each directed edge (p, q) ∈ E into an alternating edge (p+, q−) ∈ E′ with a cost

c′(p+, q−) = c(p, q).

In the second phase, the recursive cut procedure, shown in lines 4 to 11, construct

a β̃-edge disruptor of G′, denoted by Eβ̃. Here for a given β′ < β, β̃ = 1
2
(β + β′).

The β̃-edge disruptor is found by iteratively applying a subroutine SPARSE CUT on the

strongly connected components in G′. The subroutine SPARSE CUT cut the components

into smaller ones and the edges in a subset of the cuts are added to Eβ̃. The process

continues until the pairwise connectivity in the graph reduces to β
(
n
2

)
or smaller. By

the end of the second phase, Eβ̃ is mapped back to edges and nodes in G to give a

β-disruptor.

As shown in lines 4 and 5, the subroutine SPARSE CUT is applied to each strongly

connected component C to find a minimum ratio cut ⟨S′, S′⟩ in C. The cut ratio for a cut

is defined as follows.

Definition 6. Let G′ = (V ′, E′) be a directed graph. The ratio of a cut ⟨S′, S′⟩ is

α(S′) = cout(S′)
|S′||S′| , where cout(S′) is the total cost of edges coming out from S′. In addition, a

77

Algorithm 8: JLNA(G)
1. Construct the auxiliary graph G′ = (V ′, E′)
2. β̃ ← 1

2
(β + β′)

3. Eβ̃ ← ∅
4. for each SCC C in G′
5. (CE, Cα)← SPARSE CUT(C)
6. while P(G′) > β̃

(
n
2

)
7. Find a SCC C∗ of G′ with minimum cut ratio C∗

α

8. Eβ̃ ← Eβ̃ ∪ C∗
E

9. Remove edges in C∗
E from G

10. for each new component C′ in G
11. (C′E, C′α)← SPARSE CUT(C′)
12. Vβ ← {v | (v−, v+) ∈ Eβ̃}
13. Eβ ← {(u, v) | (u−, v+) ∈ Eβ̃}
14. return Dβ = (Vβ, Eβ)

cut with the minimum cut ratio is called a minimum ratio cut and denoted by

α(G′) = min
S′(V ′

α(S′)

The output of SPARSE CUT is a pair (CE, Cα), where CE = ⟨S′, S̄′⟩ and Cα =

α(S′). For simplicity, we postpone the description of SPARSE CUT til the proof on the

approximation ratio.

In the main loop of JLNA, presented in lines 6 to 11, for each round we select,

among the existing SCCs, a SCC C∗ in G that has the smallest cut ratio. Let C∗
E and C∗

α

be the cut set and the cut ratio of the cut found by SPARSE CUT in C∗. We add C∗
E to Eβ̃

and remove C∗
E from G. Removing Eβ̃ breaks C∗ into two or more strongly connected

components. We again apply SPARSE CUT on those components to find the minimum

ratio cuts.

The main loop terminates when the pairwise connectivity in G is no more than β
(
n
2

)
.

Then we construct the final solution by mapping each surrogate edge (v−, v+) ∈ Eβ̃ to

the node v in G, and each alternating edge (u−, v+) ∈ Eβ̃ to the edge (u, v) in G.

78

4.2.2 Analysis of Approximation Ratio

We show that the JLNA algorithm is an O(
√
log n) bicriteria approximation algorithm

for the β-disruptor problem. We first show the connection between the cost of an

optimal β-disruptor and the minimum cut ratio in Lemma 11. After that we derive the

approximation ratio for JLNA in Theorem 4.1.

It is not obvious to see the connection between the cost of an optimal β-disruptor

and the minimum cut ratio. Cuts in directed networks have different characteristics in

comparison to their counterpart in undirected networks.

First, the cut ratios of ⟨S, S̄⟩ and ⟨S̄, S⟩ are different in general. In addition, different

cuts may associate with the same set of links. For example, the cuts defined by S =

{blue nodes}, and S = {blue and green nodes} associates to the same set of links

{(u, v)}. To treat these differences, we use a randomized argument in the following

lemma.

Second, components in directed networks are highly interdependent. As illustrated

in Fig. 4-2, the failure of link (u, v) effectively breaks the network into four disconnected

components. Red and green components loose the communication to other parts of

the network, even none of their incoming and outgoing edges, colored in black, fail. In

contrast, the only way to separate a component from the rest in undirected networks is

to remove all links incident to the component.

Nevertheless, we are able to link the average cost to disrupt connected pairs in an

optimal β-disruptor to the minimum cut ratio in the following lemma.

Lemma 11. Given a directed graph G = (V,E) and a subset of edges Mω ⊆ E, if

ω = P(G)− P(G[E \Mω]) > 0, then c(Mω)
ω
≥ 1

3
αmin(G), where

αmin(G) = min{α(C) | C is a SCC of G}.

Proof. First, we prove the case G is strongly connected. When G is not strongly

connected, the lemma can be proved by aggregating the results on SCCs of G.

79

Figure 4-2. High interdependence of networks’ elements. Removing the marked link
(u, v) breaks the (strongly) connected network into four components. Notice
that the red and green components are separated from the others, even
when none of the incoming links to or outgoing links from those components
are removed.

If G is strongly connected, then αmin(G) = α(G) and P(G) =
(
n
2

)
. Let C1, C2, . . . , Ck

be SCCs in G[E \Mω] and let Ci(V) denote the set of vertices in component Ci. We

have ω =
∑

i<j |Ci(V)||Cj(V)|.

Observe that if we contract each SCC into a single node, we obtain the graph of

SCCs which is a directed acyclic graph. Thus, there is a topological order for SCCs and

we follow the convention that vertices with no incoming edges will have the smallest

orders. Thus, w.l.o.g, we assume that the removed edges always come from SCCs with

higher orders to SCCs with lower orders.

Consider all cuts ⟨S, S̄⟩ of G that satisfy the follows

1.Either Ci(V) ⊂ S or Ci(V) ⊂ S̄

2.If Ci(V) ⊂ S and there exists an edge from Ci(V) to Cj(V) in G[E \Mω], then Cj ⊂ S.

Clearly, ⟨S, S̄⟩ ⊆ Mω, hence, cout(S) ≤ c(Mω). For a given pair of SCCs Cl and Ck, the

probability that Cl(V) and Ck(V) belong to different sides of the cut is at least 1/3. Since,

there are four possible ways of assigning Cl(V) and Ck(V) to two sides of the cut, and at

most one out of four is forbidden according to the second condition. Thus, |Cl(V)||Ck(V)|

80

pairs of vertices between Cl and Ck are separated with probability at least 1/3. Hence,

the expected number of pairs separated by a cut ⟨S, S̄⟩ is at least

E[|S||S̄|] ≥ 1/3
∑
i<j

|Ci(V)||Cj(V)| = 1/3 ω.

Among the cuts satisfied the two above conditions, there must be a cut ⟨S∗, S̄∗⟩ that

|S∗||S̄∗| ≥ 1/3 ω. Then,

α(G) ≤ α(S∗) =
cout
|S∗||S̄∗|

≤ c(Mω)

1/3 ω

Hence, the lemma follows immediately.

Now, if G is not connected. Let T1, T2, . . . , Tl be SCCs of G, and let M (j)
ω be the

intersection of Mω and the edges in Tj, and Tj′ be the subgraphs obtained from Tj after

removing M (j)
ω . Apply the above result for the case the graph is connected on each

connected component, we have

c(Mω) =
∑
j

c(M (j)
ω) ≥ 3

∑
j

α(Tj) (P(Tj)− P(Tj′))

≥ 3αmin(G)
∑
j

(P(Tj)− P(Tj′))

= 3αmin(G) (P(G)− P(G[E \Mω]))

Thus, the lemma holds for every graph G.

The quality and performance JLNA depend on the selection of SPARSE CUT. For

example, an exact algorithm to find minimum ratio cut will lead to a constant factor

bicriteria approximation algorithm for β-disruptor. Unfortunately, finding the min ratio

cut is an NP-hard problem [9]. Thus we have to rely on approximation algorithms to find

good ratio cut in the graph.

Theorem 4.1. For any fixed 0 ≤ β′ < β, algorithm JLNA finds a β-disruptor of cost at

most O(
√
log n)ϕ(OPTβ′), where OPTβ′ is the cost of a minimum β′-disruptor.

81

Proof. The proof consists of two steps. In the first step, we prove that Dβ = (Vβ, Eβ) is

a β-disruptor of G. In the second step, we prove that the cost of Dβ is at most O(
√
log n)

times the cost of a minimum β′-disruptor, denoted by OPTβ′.

In order to prove that Dβ is a β-disruptor of G, we show that the pairwise connectivity

in G after removing edges in G[−Dβ] = (V \ Vβ, E \ (Eβ ∪ Vβ × Vβ)) is at most β
(
n
2

)
.

First, observe that vertices v− and v+ are either in the same SCC or they both are

isolated. Here, we say a vertex is isolated if it belongs to a SCC of size one. Assume

that G′[E′ \ Eβ̃] can be decomposed into SCCs C1′, C2′, . . . , Cl′ and 2t isolated vertices

w−
1 , w

+
1 , . . . , w

−
t , w

+
t . Based on the construction of G′, we can verify that there are l

corresponding SCCs C1, C2, . . . , Cl and t isolated vertices w1, w2, . . . , wt in G[−Dβ].

Moreover, |Ci′| = 2|Ci| for i = 1..l.

Therefore, we have

β̃
(
2n
2

)
≥ P(G′[E′ \ Eβ̃]) =

∑
i

(|Ci′|
2

)
= 4

∑
i

(|Ci|
2

)
+
∑
i

|Ci| = 4P(G[−Dβ]) + (n− t)

Since β̃ < β, we have

P(G[−Dβ]) ≤
1

4

(
β̃
(
2n
2

)
− (n− t)

)
≤ β

(
n
2

)
Thus, we have completed the first step. We prove the second step as follows.

Let D∗
β′ = (Vβ′, Eβ′) be a minimum β′-disruptor i.e. c(D∗

β′) = OPTβ′. Define

E′β′ = {(v−, v+) | v ∈ Vβ′} ∪ {(u+, v−) | (u, v) ∈ Eβ′}.

By mapping SCCs of G[−D∗
β′] to those of G′[E′ \ E′β′] as in the first step, we can show

that E′β′ is a β′-edge disruptor of G′. Thus,

OPTβ′(G) ≤ OPTE
β′(G′).

82

Since β′ < β̃, by Lemma 11 if removing a set of edges Mω ⊆ E disrupts ω pairs of

vertices, then c(Mω)
ω
≥ 1/3αmin(G). At any round in the while loop of RBA, since a set of

edges E∗
β′ in a minimum β′-edge disruptor, for some 0 < β′ < β, can disrupt at least

(β − β′)
(
n
2

)
more pairs in G, we have

OPTE
β′/
(
(β − β′)

(
n
2

))
≥ 1/3αmin(G). (4–7)

Since our cut procedure is an O(
√
log n) factor approximation algorithm for the min

cut ratio problem, the average cost to disrupt a pair by removing C∗
E is upper bounded by

O(
√
log n)αmin(G). By (4–7), the average cost to disrupt pairs in the graph at any step is

at most O(
√
log n)(OPTE

β′)/
(
(β − β′)

(
n
2

))
. Therefore, even when Eβ disrupt all

(
n
2

)
pairs

in G, the total cost is no more than

O(
√

log n)×
OPTE

β′(
(β − β′)

(
n
2

))
×
(
n
2

) ≤ O(
√
log n)

(β − β′)
×OPTE

β′.

Thus we have

c(Eβ̃) ≤ O(
√

log 2n)OPTE
β′(G′) ≤ O(

√
log n)OPTβ′(G).

That yields the proof.

4.3 Hybrid Meta-heuristic

Our second choice for SPARSE CUT is a simple yet efficient spectral bisection

method [61]. The β-edge disruptor found by RBA is further optimized by a hybrid of

variable neighborhood search [60] and simulated annealing [51]. Numerical results

in Section 6.4 suggest that our hybrid method is competitive for the β-edge disruptor

problem.

4.3.1 Spectral Bisection

Let A = {cij} be the cost matrix of G = (V,E) where cij = c(vi, vj) is the cost of

edge (vi, vj) and cij = 0 if (vi, vj) /∈ E. The unnormalized graph Laplacian matrix [61]

83

Algorithm 9: Spectral Bisection(G)
Compute eigenvector x corresponding to λ2 of L
Sort entries in x
for p = 1 to n

Calculate ratio of the cut Sp = {vi |xi ≤ xp}
return Sp with the best ratio cut

is defined as L = D − A, where D is a diagonal matrix with the weighted degrees of

vertices on the diagonal.

The matrix L is symmetric and positive semi-definite, since for every vector x ∈ Rn

we have

xTLx =
1

2

n∑
i,j=1

cij(xi − xj)2 ≥ 0. (4–8)

L has n non-negative, real-valued eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. The second

smallest eigenvector of L, λ2, is known as the algebraic connectivity of the graph and

can be used to describe many properties of graphs [61]. We shall use the eigenvector

corresponding to λ2 to derive the bisection of vertices in G.

Recall that SPARSE CUT aims to find the min ratio cut

min
S(V

c(S, S̄)

|S||S̄|
(4–9)

Consider a vector x ∈ {0, 1}n represent a set of vertices in S i.e. xi = 1 if vi ∈ S and

xi = 0 otherwise. We rewrite the min ratio cut problem as

min
x∈{0,1}n,x̸=0,1

∑
(vi,vj)∈E cij(xi − xj)

2∑
i

∑
j(xi − xj)2

(4–10)

Since the problem is NP-hard, we relax the condition xi ∈ {0, 1} to xi ∈ [0, 1]. Substitute

x with vector y = x− ∥x∥1
n

. After some algebra, we obtain an equivalent problem of (4–10)

min
y ̸=0,y⊥1

1

n

yTLy

yTy
(4–11)

84

By Courant-Fisher theorem [61], the solution of the above minimizing problem is

exactly the eigenvector corresponding to the second smallest eigenvalue of λ2. So

we can approximate the optimal solution of the min ratio cut problem with the second

eigenvector of L by transforming the real-valued x into a zero-one vector. One simple

way is to sort the xi to give a linear ordering of the vertices then determine the splitting

index p that yields the best cut ratio. The whole procedure is summarized in Algorithm 9.

Assume that the eigenvalues can be found within a constant number of iterations

[54], RBA algorithm will have an O(n2) time complexity.

4.3.2 Hybrid Meta-heuristic

As we cannot control how many connected pairs SPARSE CUT will separate, RBA

algorithm usually disrupts more connected pairs than required, resulting in less optimal

solutions. Therefore, in order to further improve the performance of RBA, we introduce a

hybrid method, using both simulated annealing [51] and variable neighbourhood search

(VNS)[60]. The simulated annealing makes the number connected pairs converge to the

desired level, while the local search methods explore alternative solutions to reduce the

cost.

For β-edge disruptor problem, multiple neighborhood structure is essential to obtain

high quality solutions. To find minimum β-edge disruptor, we aim to minimize the cut

ratio that may lead to disrupting more pairs than necessary and incurring higher costs.

Alternating among neighborhood structures enables us to seek for edge disruptors with

both small ratio cuts and small costs. Similar to simulated annealing, we allow “uphill”

moves that increases the cost of the solution if they improve certain aspects of the

solution.

We consider four different neighborhood structures. From a solution or a partial

solution Eβ ⊂ E, the set of neighbors in each neighborhood structure can be obtained

as follows

85

Algorithm 10: HMH(G)
Eβ ← ∅, τ ← min{β, 1− β}
while τ > 1/

(
n
2

)
τ ← 1

2
τ

Eβ ← Eβ ∪ RBA(G[E \ Eβ], β − τ)
for k = 1 to 3 /* Phase 1: Condensation */

repeat
Consider all type k neighbors E′β that
c(E′β) ≤ c(Eβ) and P(G[E \ E′β]) ≤ β

(
n
2

)
Find among them E′β with the smallest cut ratio
Eβ ← E′β

until no change in Eβ
for k = 1 to 4 /* Phase 2: Exploration */

repeat
Consider all type k neighbors E′β that
(β − τ)

(
n
2

)
≤ P(G[E \ E′β]) ≤ (β + τ)

(
n
2

)
Find among them E′β with the smallest cut ratio
Eβ ← E′β

until no change in Eβ
return the best solution so far

• Type 1: Merge two connected components in G[E \ Eβ] i.e. remove the edges
between them from Eβ.

• Type 2: Move a vertex from one component to an adjacent component in G[E \Eβ].

• Type 3: Swap places of two adjacent vertices (u, v) which belong to two different
components.

• Type 4: Partition a component in G[E \ Eβ] with Spectral bisection.

Beside reducing the total cost, we also want to move to neighbors with smaller cut

ratio which is defined as

α(Eβ) =
c(Eβ)

P(G)− P(G[E \ Eβ])

The cut ratio is the average cost to disrupt pairs by removing edges in Eβ. We use the

best improvement strategy i.e. among eligible neighbors we change to the neighbor with

the smallest cut ratio.

86

Our hybrid meta-heuristic (HMH) is presented in Algorithm 10. We use a parameter

τ , similar to the heating condition in Simulated Annealing [51], to control how far the

pairwise connectivity in the graph can diverge from the target connectivity β
(
n
2

)
. Every

round, τ is reduced by half until it is negligibly small. The algorithm alternates between

two phases: condensation and exploration. In the condensation phase, the goal is

to reduce the cost of the current β-edge disruptor. As mention, we do not favor the

neighbor with the largest decrease in cost but the one with the smallest cut ratio.

In the exploration phase, we emphasize on improving the cut ratio to find potential

good partition of the network. Moving to neighbors with higher costs is possible during

this phase as long as the pairwise connectivity differs at most τ
(
n
2

)
from the target

connectivity level β
(
n
2

)
. If outcome of the exploration phase is not a β-edge disruptor, the

RBA algorithm is invoked to produce a greedy solution before the algorithm continues

the condensation phase again. Finally, the algorithm output the smallest cost β-edge

disruptor, encountered during the search.

Since the algorithm has at most log
(
n
2

)
= O(log n) phases, and it spends at most

O(n3) times to improve the solution within each phase, the HMH algorithm has a time

complexity O(n3 log n). In our experiments, it has (almost) the same running time with

RBA using spectral bisection in place of HMH, which has an O(n2) time complexity.

Directed HMH Algorithm. The algorithm to find a sparse cut in [2] has a high time

complexity O(n9.5) as it requires solving a large Semidefinite Programming. Fortunately,

we again can turn to spectral partitioning to find small ratio cuts in directed graphs and

further optimize the solution using the similar techniques in Algorithm HMH.

The major change is to replace the spectral bisection in undirected graph with one

for directed graph. This can be done by transforming the asymmetric adjacency matrix A

to a symmetric one using one of the symmetrization methods such as (A + AT)/2, AAT ,

etc. [57]. Besides, we consider a new type of neighborhood (Type 5), in which we can

87

remove (or un-remove) a node in the graph. With one of the mentioned symmetrization

methods, the HMH algorithm for directed graph also has the time complexity O(n3 log n)

4.4 Experimental Studies

��

��

��

��

��

��

������������	�����

�
��

����������������
��������������

���������������������

A α = 0 and b = 0.25

����

��

����

��

����

������������	�����

�
��

B α = 0 and b = 2.25

����

��

����

������������	�����

�
��

C α = 0.25 and b = 2.25

��

��

��

��

��

������������	�����

�
��

D α = 1.25 and b = 1

Figure 4-3. The normalized optimal costs of three different disruptor types on the US
Backbone network.

We illustrate through our experiments the need to assess network vulnerability

under joint node and link attacks.

4.4.1 Experiment Setups

4.4.1.1 Datasets

The experiments are performed on three real communication networks, namely

IP Backbone[1], CAIDA AS[56], and Oregon AS[56], and a set of four synthesis

88

networks described in subsection 4.4.3. The network details are given in the subsequent

subsections and the references.

4.4.1.2 Removal costs schemes

Assigning meaningful costs for edges and vertices is a challenging task which

usually depends on the availability of the data. For simplicity, we assume that all

edges has uniform removal costs c(e) = 1∀e ∈ E. Note that we can always multiply

simultaneously edge and vertex costs with a constant, then all optimal disruptors stay

optimal (with the costs multiplied by the same constant). We assign the cost of removing

a vertex u to be c(u) = b + αd(u), where b and α are non-negative constants. In

other words, attacking a node requires paying a base cost b and an extra cost that is

proportional to the degree centrality. Other centrality measurements e.g. PageRank,

Betweeness centrality can also be used in place of d(u) to weight the u’s importance.

4.4.1.3 Finding the optimal disruptor

The optimal solutions are found by solving the MILP in Section 4.1.1 with the

sparse metric and advanced plane cutting techniques in our previous work [30]. The

mathematical optimization package to solve the IP is GUROBI 4.5.

4.4.1.4 Solving for the second eigenvector

The major time of HMH (Algorithm 10) spends on finding the second smallest

eigenvector of the Laplacian matrix. The eigenvectors are found using the Implicitly

Restarted Arnoldi Method, implemented in ARPACK [54]. We use SuperLU [29] as the

linear systems solver.

We use the Shift and Invert spectral transformation to enhance the convergence

rate 1 . We select a scalar σ = 0.01, called the shift, and transform the original problem

Lx = λx into the shift-and-invert problem (L − σI)−1x = µx where µ = 1/(λ − σ). Note

1 In many cases, the regular mode does not converge after 20,000 iterations.

89

��
���
���
���
���
���
���
�	�
�
�
���

����

������������
�����

���

���
���

��
�������������� !�

�����"���� !�

A Erdos-Reyni (random) network

��

���

����

������������������

�	
�

B Barabasi (power-law) network

��

���

����

������������������

�	
�

C Watts-Strogatz network

��

���

����

������������������

�	
�

D Forest fire network

Figure 4-4. Costs of disruptor algorithms on the synthesis networks

that setting σ = 0 will crash ARPACK since L is non-invertible (sum of rows equal zero)

2 .

In the case of JLNA, spectral bisection is performed on the symmetrized matrix

A′ + A′T , where A′ is the adjacency matrix of the auxiliary graph G′, constructed in

Algorithm 8.

90

�����

����

��

���

����

�����

������

�������

������������������

	
��

A Erdos-Reyni (random) network

������

�����

����

��

���

����

�����

������

�������

������������������

	
��

B Barabasi (power-law) network

�����

����

��

���

����

�����

������

�������

������������������

	
��

C Watts-Strogatz network

������

�����

����

��

���

����

�����

������������������

	
��

D Forest fire network

Figure 4-5. Running time of disruptor algorithms on the synthesis networks

4.4.1.5 Implementation details

All algorithms are implemented in C++ and compiled with GCC 4.4 compiler on a 64

bit Linux machine with a Quad-core AMD Opteron 2350 2.0 Ghz processor and 32 GB

memory. Only a single core is used during the experiments.

4.4.2 Comparison of the three disruptor types

Before analyzing the experimental results, given in Fig. 4-3, for three different

disruptor types (edge, vertex, and general), we summarize the provable connections

2 The ’eigs’ function to find eigenvalues in MATLAB crashes for this reason.

91

among those three. First, the cost of optimal β-disruptor is always less than the costs of

both β-edge disruptor and β-disruptor. Second, if the cost scheme c(u) = b + αd(u) is in

use, we can tell when the cost of the optimal beta-disruptor meets exactly the minimum

of that of β-edge disruptor and β-vertex disruptor.

Note that if c(u) < c(u, v) for some (u, v) ∈ E, then the edge (u, v) should not be

removed (as we can remove u instead). Similarly, a node u with c(u) >
∑

(u,v)∈E c(u, v)

will not be removed since we can always remove all of its incident edges. Therefore, we

obtain the following properties.

• α = 0, b ≤ 1: OPTβ = OPTV
β ≤ OPTE

β i.e. the optimal β-disruptor contains no
edges.

• α = 0, b > 1: the optimal solutions contain no u with d(u) < b.

• 0 < α < 1: the optimal β-disruptor contains only vertices of degree at least b
1−α .

• 1 ≤ α: OPTβ = OPTE
β ≤ OPTV

β i.e. the optimal β-disruptor contains no vertices.

We test four different settings of α and b that correspond to the above four cases on

the fiber backbone operated by a major U.S. network provider [1]. The optimal costs

of three disruptor types are shown in Fig. 4-3. In Fig. 4-3A, the costs of β-disruptor

equal exactly the cost of β-vertex disruptor; in Fig. 4-3D, the costs of β-disruptor equal

exactly the cost of β-edge disruptor. These agree with the above four mentioned cases.

However, for Figs. 4-3B and 4-3C, the costs of β-disruptor are strictly less than the

minimum of both edge-disruptor and vertex-disruptor. In addition, for small β the cost of

edge-disruptor is less than that of vertex-disruptor, while for large β the vertex-disruptor

has substantially smaller cost. This suggests that small scale attacks should target

links, while large scale attacks should pay more attention to nodes to reduce the attack

cost. Nevertheless, a combination of both node and link attacks would result in a more

cost-effective strategy to break the network.

92

4.4.3 Synthesis Networks of Different Topologies

We test our algorithms on synthesis moderate-sized networks to 1) compare the

solutions of our algorithms to that of the optimal solutions obtained by solving Integer

programming (IP), and 2) verify the performance of the algorithms across different

network topologies. Four synthesis networks of 100 nodes and approximately 200 edges

are generated following below complex network models.

• Erdos-Reyni: A random graph of 100 vertices and 200 edges following the
Erdos-Reyni model [36].

• Barabasi-Albert: A power-law model using preferential attachment mechanism
[12].

• Watts–Strogatz: A random graph which exhibit small-world phenomenon following
model [79] with the dimension of the lattice 2 and the rewiring probability 0.3[79].

• Forest fire: A random power-law graph following Forest fire model by Leskovec
et al. [56] with the forward and backward burning probabilities 0.3 and 0.9,
respectively.

Set up. We show the costs produced by both types of disruptors β-edge disruptor

and β-disruptor in Fig. 4-4. The measured β-edge disruptor algorithms are RBA (the

RBA algorithm using spectral bisection in the place of SPARSE CUT), HMH, and optimal

β-edge disruptor (Opt. edge dis.) ; and the measured β-disruptor algorithms are

JLNA and optimal β-disruptor (Opt.β-dis.). The costs of vertices follow the linear scale

c(u) = b+ αd(u) where α = 0.25 and b = 0.25.

β-edge disruptor. Among β-edge disruptor algorithms, HMH matches the optimal

solutions obtained by solving IP (Opt. edge dis) most of the times; and in other cases,

the gap between the two are negligibly small. However, there are much larger gaps

between RBA’s solutions and the optimal solutions. The reason RBA is less competitive

is that it may separate many more node pairs than the required, especially when β is

small. For example, when β = 80% the cost of RBA is more than three times higher than

that of the HMH algorithms and the optimal solutions. This implies that the annealing

93

procedure and the VNS in HMH are capable of correcting the overcutting caused

by RBA.

β-disruptor. The β-disruptor costs found by JLNA also closely approach those

of the optimal (Opt. β dis.). On average, the solution of JLNA is only 15% larger than

the optimal. However, the gap between JLNA and the optimal is less impressive than

that between HMH and the optimal edge disruptor. The reason is possibly due to the

fact that we simply symmetrize the adjacency matrix to find the directed cut; and the

JLNA’s performance can be enhanced with better directed spectral cut algorithms.

Nevertheless, the cost of JLNA is substantially less than that of the optimal edge

disrutpor. Thus, JLNA is able to reveal vulnerability at both links and nodes in the

network.

����

�����

������

������������������

�	
�

�����������

���
���
��

��

���

����

�����

������������������

�	
�

������������	��

Figure 4-6. Oregon AS network

Running time. Fig. 4-5 shows the running time on four synthesis networks. Both

the two IPs take excessive amounts of time (up to 10 hours) to return the solution on

Erdos-Reyni, Barabasi and Watts-Strogatz network. In contrast, RBA, HMH and JLNA

take less than one second to complete in all cases. Since JLNA algorithm splits the

nodes in the network (thus, double the network size), it has slightly higher running time

than those of RBA and HMH.

94

����

�����

������

������������������

�	
�

�����������

���

����

�����

������������������

�	
�

������������	��

Figure 4-7. CAIDA AS network

Overall, HMH and JLNA algorithms prove to be excellent choices to find disruptors in

moderate-sized networks. They produce high quality solutions within a short amount of

time and the performance is stable across different network topologies. We further study

the performance of HMH and JLNA on larger (real) communication networks.

4.4.4 AS Relationships Networks

We analyze HMM, and JLNA 3 , with the same settings in the last subsection, on the

following AS relationships datasets.

• CAIDA AS: The CAIDA AS Relationships Dataset from Sep. 17, 2007 [56] with
8,020 nodes and 36,406 links.

• Oregon AS: AS peering information inferred from Oregon route-views between
March 31 and May 26, 2001 [56]. Only the largest connected component with
11,174 nodes and 23,410 links is considered.

The costs and running times are reported in Figs. 4-6 and 4-7. Similar to the cases of

synthesis networks, the HMH algorithm continue to produces solutions with significantly

smaller costs than RBA’s. For β = 80% and β = 60%, the cost of HMH is less than half of

that in RBA. In addition, both algorithms have almost identical running time. The major

portion of time is spent on finding the second eigenvector; and performing local search

3 The IPs cannot handle networks with more than few hundred nodes.

95

and annealing procedure is relatively inexpensive. Obviously, HMH dominates RBA with

higher quality solutions and within (almost) the same running time.

Note that computing eigenvector, the bottleneck in our algorithms, can be done

efficiently in a distributed manner. For example, Google is capable of solving the

eigenvalue problem on the web network of billions of nodes. Thus, the proposed

solutions are scalable for much larger networks.

Joint node and link attacks pose a serious threat to the network. In addition to

network connectivity, it is also important to assess the vulnerability of the network under

joint node and links networks in terms of other performance metrics such as network

throughput, maximum network flow between source-destination pairs, and so on.

Furthermore, the problem of allocating resource to protect the network under the joint

attacks is of great importance and is the topic of our future study.

96

CHAPTER 5
VULNERABILITY ASSESSMENT IN PROBABILISTIC NETWORKS

We investigate the vulnerability of probabilistic networks under multiple attacks.

That is we aim to identify the most critical subsets of infrastructure whose removal

maximize the disruptive effect on the network in term of connectivity. Finding such a

subset is extremely challenging due to the uncertainty of the network topology and the

exponentially large number of attack schemes. We show that finding exact solution is

computationally intractable and propose an efficient two-stage stochastic programming

to approximate the identification of the critical infrastructure. Furthermore, we propose

a novel sampling scheme, which find solutions with guaranteed probabilistic accuracy.

Finally we demonstrate the effectiveness and efficiency of the proposed algorithms on

real and synthetic data sets.

Disruptive events, ranging from natural disasters to malicious attacks, can

drastically compromise the network’s ability to meet its quality-of-service(QoS)

requirements, if not cause widespread service outages and potentially total network

breakdown [46, 62, 64, 68]. Moreover, there is a significant concern over critical

infrastructures in electrical power grids and highway systems as targets for terrorist

attacks [67]. To mitigate the risk and develop proactive responses, it is essential to

assess network vulnerability to identify the most destructive attack scenarios.

Although there has been a significant amount of work on assessing network

vulnerability, most previous works focus mainly on using centrality measurements

e.g. degree, betweeness, and closeness centralities [6, 7] to identify critical links or

nodes. Unfortunately, these approaches only determine the relative importance of a

small number of nodes or links and cannot reveal the enormous damage potential

caused under simultaneous attacks. Other set of works studies links and nodes removal

problems that optimize several global graph measures, such as clustering coefficient,

network diameter, etc. However, these measures do not cast well for particular kinds

97

of network vulnerability, when the network connectivity is of high priority. To this end,

pairwise connectivity, the number of node pairs that remain connected, has been

recently used as an effective measure to account for the effect of the attacks [11, 30, 33,

62, 64].

5.1 Probablilistic Networks

In this section, we first present the considered probabilistic network model, followed

by the formal definition of the studied problems.

5.1.1 Probabilistic Network Model

The network with uncertain links is modeled using a tuple G = (V,E, p) where

vertices in V corresponds to the set of nodes, edges in E corresponds to the set of

links in the network, and p : E → [0, 1] maps each edge (u, v) ∈ E to a real number in

puv ∈ [0, 1] that represents the availability of (u, v) and puv = 0 for all (u, v) /∈ E. Further,

denote by ξ the adjacency matrix of G, i.e., Pr[ξuv = 1] = puv and Pr[ξuv = 0] = 1 − puv

for all pairs (u, v). For clarity, we consider only undirected networks and assume that

the existing of edges are independent of one another, though our approaches also

apply in principle to directed graphs or graphs with edge correlations as long as we can

effectively generate samples of the probabilistic graph.

A sample graph (or a realization) Gl = (V,Ei) of G is generated by selecting each

edge e ∈ E with probability p(e). The sample space SG consists of N = 2|E| possible

samples SG = {G1 = (V,E1), G2 = (V,E2), . . . , GN = (V,EN)} of G that correspond to

2|E| possible subsets of E. The probability that Gl is sampled from G is given by

fG(G
l) = Pr[G = Gl] =

∏
e∈Ei

pe
∏

e∈E\Ei

(1− pe)

Moreover, the matrix {ξl}uv are used to denote the adjacency matrix of Gl.

5.1.2 Expected Pairwise Connectivity

As mentioned above, our measure for the disruptive effect is based on the value of

pairwise connectivity (EPC), which is the number of (expected) connected pairs in the

98

residual network. For a deterministic graph Gl, the pairwise connectivity, denoted by

P(Gl), is the number of pairs (u, v) with at least one path between u and v. Naturally, the

expected pairwise connectivity for the probabilistic graph G is defined as

EPC(G) = E [P(G)] =
N∑
l=1

fG(G
l)P(Gi).

Lemma 12. Given a probabilistic graph G = (V,E, p), we have

EPC(G) = 1

2

∑
u,v∈V ;u̸=v

RELu,v(G)

where RELu,v(G) is the probability that v is reachable from u within G.

Partial order. Given two probabilistic graphs GA(VA, EA, pA) and GB(VB, EB, pB),

we say GA is dominated by GB, and write GA ≼ GB, iff VA ⊆ VB, EA ⊆ EB, and

pAe ≤ pBe ∀e ∈ EA.

Lemma 13. Given two probabilistic graphs GA and GB, if GA ≼ GB, then EPC(GA) ≤

EPC(GB).

5.1.3 Vulnerability Assessment

We define the following problems based on their deterministic versions in [10, 33].

On one hand, the number of nodes/ edges to remove is given, and we wish to maximize

the expected disruptive effect.

k-Probabilistic Critical Nodes Problem (k-pCNP). Given a probabilistic network

G = (V,E, p) and an integer 0 ≤ k ≤ n, find a k nodes subset S ⊂ V that removal

minimizes the expected pairwise connectivity in the residual network after removing the

nodes in S.

5.2 Estimation of Connectivity in Probabilistic Networks

5.2.1 #P-Completeness

In this paper, we first show that computing expected pairwise connectivity in a

probabilistic network is #P-complete. A computation problem f in #P is said to be

#P-complete if every problems in #P is reducible to f . Here #P is the class of “counting

99

version” of problems in NP, i.e., they are problems of the form “compute the number

of solutions” for a problem in NP. Showing that a computation problem is #P-complete

makes a strong statement about its intractability: if such a problem were computable in

polynomial time then not only P=NP but also P=PH.

Theorem 5.1. Computing the expected pairwise connectivity EPC(G), given a probabilis-

tic graph G, is #P-complete.

Proof. We prove the theorem by a reduction from the counting problem of s − t

connectedness in an undirected graph [75]. The problem is to count the number of

subgraphs of a graph G in which there is a path from s to t. The problem is equivalent

to computing the probability that s is connected to t when each edge in G has an

independent probability 1/2 of being connected, and another 1/2 to be disconnected.

We reduce this problem to the expected pairwise connectivity computation problem

as follows. We first construct four probabilistic graphs G0, G1, G2, G3, where

• G0 = G and p(e) = 1/2 for all e ∈ E.

• G1 is obtained from G0 by adding a new node s′ and an edge (s, s′) with p(s, s′) =
1.

• G2 is obtained from G0 by adding a new node t′ and an edge (t, t′) with p(t, t′) = 1.

• G3 is obtained from G0 by adding nodes s′ and t′, and edges (s, s′), and (t, t′) with
probabilities p(s, s′) = p(t, t′) = 1.

Next we compute P0 = EPC(G0), P1 = EPC(G1), P2 = EPC(G2), and P3 = EPC(P3).

Then, we can return P0 − P1 − P2 + P3 as the probability that s is connected to t and

thus we solve the s− t connectedness counting problem. In addition, there is an obvious

reduction from the expected pairwise connectivity computation problem to the s − t

connectedness problem via the equality EPC(G) =
∑

u ̸=v RELu,v(G). It is shown in [75]

that s − t connectedness is #P-complete, and thus the expected pairwise connectivity

computation problem is also #P-complete.

100

Finally, we prove that P0 − P1 − P2 + P3 = RELs,t(G), the probability that s and

t is connected in G. By the construction of G1, we have P1 = P0 +
∑

v∈V RELs′,v(G) =

P0+
∑

v∈V RELs,v(G). Similarly, P2 = P0+
∑

v∈V RELv,t(G) and P3 = P0+
∑

v∈V RELs,v(G)+∑
v∈V RELv,t(G) + RELs,t(G). It is straightforward to verify that RELs,t(G) = P0 − P1 − P2 +

P3.

We are interested in (ϵ, δ)-approximations for EPC(G), i.e., algorithms returning an

estimate of EPC(G) accurate to within a relative error of ϵ with probability at least 1 − δ.

Formally, we define (ϵ, δ)-approximations as follows.

Definition 7 ((ϵ, δ)-approximation). A function F̂ (G) is an (ϵ, δ)-approximation for the

expected pairwise connectivity E[P(G)] if

Pr
[
(1− ϵ)E[P(G)] ≤ F̂ (G) ≤ (1 + ϵ)E[P(G)]

]
> 1− δ

An (ϵ, δ)-approximation is called a fully polynomial randomized approximation

scheme (FPRAS) if its running time is bounded by a polynomial in 1/ϵ, log(1/δ), and

the input size. An FPRAS is generally regarded as a robust notion of “approximation

algorithm” for counting problems. Sinclair and Jerrum showed that every #P-complete

problem either has an FPRAS, or is essentially impossible to approximate [70].

5.2.2 Monte-Carlo Methods to Approximate EPC

We present a simple Monte-Carlo algorithm to estimate the EPC in Algorithm 11.

The algorithm draws N1(ϵ, δ) samples of G. Each sample is generated by including each

edge e ∈ E with probability pe. The average pairwise connectivity in the N1(ϵ, δ) sample

graphs is computed and returned as an unbiased estimator for EPC(G).

101

Algorithm 11. (ϵ, δ) Monte-Carlo Algorithm to compute EPC(G)

1. C1 ← 0.

2. for i = 1 to N1(ϵ, δ) do

• Draw a sample graph Gi of G.

• C1 = C1 + P(Gi).

3. Return E1 = C1

N
as an unbiased estimator of EPC(G).

The number of necessary samples to be drawn, denoted by N1(ϵ, δ), is derived

based on the following Generalized Zero-One Estimator Theorem introduced by Dagum

et al. [28].

Theorem 5.2. (Generalized Zero-One Estimator [28]) Let X1, X2, . . . , XN be indepen-

dent identically distributed random variables taking values in [0, 1], with mean µ > 0. If

0 < ϵ < 1 and N ≥ 4(e− 2) ln(2/σ)1/(ϵ2µ), where e ≈ 2.718 is Euler’s number, then

Pr

[
(1− ϵ)µ ≤ 1

N

N∑
i=1

Xi ≤ (1 + ϵ)µ

]
> 1− δ.

By applying Theorem 5.2 to the i.i.d. random variables Xi = P(Gi)/
(
n
2

)
with mean

µ = EPC(G)/
(
n
2

)
, we obtain the following lemma.

Lemma 14. If N1(ϵ, δ) ≥ 4(e− 2) ln 2
σ

1
ϵ2µ

, then E1 is an (ϵ, δ)-approximation.

Time complexity. The time to draw a sample and compute the pairwise connectivity

is O(m + n). Since we often regard δ as a constant, Algorithm 11 has a time complexity

O ((m+ n)n2ϵ−2EPC(G)−1).

If EPC(G) is bounded below by 1/poly(n;m), then Algorithm 11 is an FPRAS. The

difficult case is the estimation of small values of EPC(G), where the algorithm is no

longer a polynomial-time algorithm. This motivates the construction of better estimation

methods to be presented next.

102

5.2.3 Fully Polynomial Time Approximation Scheme

5.2.3.1 Component Sampling Algorithm

We present an importance sampling method to estimate EPC(G) in Algorithm 12. In

stead of generating the whole sample graph as in Algorithm 11, we select a node u ∈ V

uniformly and perform a Bread-First Search procedure from u, until reaching all nodes in

the connected component that contains u. The algorithm then computes the average of

the size of the component that contains u less one, and multiply the result by n to obtain

an unbiased estimator E2.

Algorithm 12. (ϵ, δ) Component Sampling Algorithm to compute EPC(G)

1. Let PE =
∑

e∈E pe

2. if PE < 1/m then

3. return E2 = PE.

4. C2 ← 0.

5. for i = 1 to N2(ϵ, δ) do

• Select a node u ∈ V uniformly.

• Simulate a Breath-First Search from u in G. Let Si be the
number of visited nodes.

• C2 = C2 + (Si − 1).

6. Return E2 = nC
2N

as an unbiased estimator of EPC(G).

Theorem 5.3. For N2(ϵ, δ) = 4(e− 2) ln 2
σ

n(n−1)
ϵ2EPC(G) , E2 is an (ϵ, δ)-approximation for EPC(G).

Proof. In the main loop of Algorithm 12, we can compute Si with the following equivalent

steps: 1) Draw a sample graph Gi; and 2) Select a node u in Gi uniformly and compute

Si as the size of connected component that contains u. Assume that there are t

connected components with sizes s1, s2, . . . , sk in Gi. Then E[Si − 1|G = Gi] =∑k
i=1 si(si−1)∑k

i=1 si
= 2P(Gi)

n
. Hence E[Si − 1] = 2EPC(G)/n.

103

By applying Theorem 5.2 to i.i.d. Yi = (Si − 1)/(n− 1) with mean µ = EPC(G)/
(
n
2

)
, it

follows that E2 is an (ϵ, δ) approximation of EPC(G).

Lemma 15. In any undirected probabilistic graph G = (V,E, p), we have

∑
e∈E

pe ≤ EPC(G) ≤

(
1 +

1

m

∑
e∈E

pe

)m

.

Proof. We prove the lower and upper bounds separately.

Lower bound : By Lemma 12, we have

EPC(G) = 1

2

∑
u,v∈V ;u̸=v

RELuv(G)

≥
∑

(u,v)∈E

RELuv(G) ≥
∑

(u,v)∈E

puv

Upper bound : First, we show that EPC(G) ≤
∏

e∈E(1 + pe). Then we can apply the

inequality of arithmetic and geometric means [20] for positive numbers (1 + pe) ∀e ∈ E to

obtain

EPC(G) ≤
∏
e∈E

(1 + pe) ≤

(
1 +

1

m

∑
e∈E

pe

)m

.

We prove EPC(G) ≤
∏

e∈E(1 + pe) by induction on µE the number of undetermined

edges (those with probabilities strictly less than one).

Basis: If µE = 0, we have a deterministic graph with m = |E| edges. Since, the

size of the largest component cannot exceed m + 1, the pairwise connectivity is at most

1/2n(m+ 1) < 1/2m(m+ 1) < 2m ∀m ≥ 0. Thus, the inequality holds for µE = 0.

Induction step: Assume that the inequality holds for µE = t ≥ 0, we show that the

inequality also holds when µE = t + 1. Assume that µE = t + 1, select an arbitrary

undetermined edge (u, v) ∈ E and perform branching on (u, v) as shown in Eq. 5–27.

We have

EPC(G) = puvEPC(G+) + (1− puv)EPC(G−),

104

where G+ is obtained from G by setting the (u, v)’s probability to one and G− is obtained

from G by removing (u, v). Since, both G+ and G− have exactly µE undetermined edges,

we can apply the induction hypothesis to obtain

EPC(G) ≥ puv(1 + 1)
∏

e̸=(u,v)

(1 + pe)

+ (1− puv)
∏

e̸=(u,v)

(1 + pe)

= (1 + puv)
∏

e̸=(u,v)

(1 + pe) =
∏
e∈E

(1 + pe).

Thus, the inequality holds for all µE ≥ 0.

The bounds in Lemma 15 are asymptotic tight in the sense that there are arbitrary

large graphs in which the bounds are only different from the actual values of EPC(G)

by a factor of two. For example, consider G as a star graph of size n that consists of

one center vertex and n − 1 leaves. All n − 1 edges are assigned the same probability

1/(n − 1). One can verify that the lower-bound, EPC(G), and the upper bound are

1, 3
2
− 1

2(n−1)
, and

(
1 + 1

n−1

)n−1
< e, respectively.

Theorem 5.4. Algorithm 12 is a fully polynomial randomized approximation scheme

(FPRAS) for network connectivity (for any set of edge-dependent failure probabilities

{pe}e∈E.

Proof. Consider two cases PE < n−2−µ and PE ≥ n−2−µ for some arbitrary small µ > 0.

105

Case PE ≤ n−2−µ: Let Pl, l = 0..m be the probability that the graph has exactly l

edge(s). We have
∑m

l=0 Pl = 1. In addition, let P+
3 =

∑m
l=3 Pl. We have

P0 =
∏
e∈E

(1− pe) ≥ 1− PE (5–1)

P1 =
∑
e∈E

pe
∏
e′̸=e

(1− pe′) =

(∑
e∈E

pe
1− pe

)
P0 (5–2)

P+
2 = 1− P0 − P1 ≤ 1− P0(1 +

∑
e∈E

pe
1− pe

) (5–3)

≤ 1− (1− PE)(1 + PE) = P 2
E (5–4)

We have

PE ≤ EPC(G) ≤
(
1

2

)
· P0 +

(
2

2

)
· P1 +

(
n

2

)
P+
2 (5–5)

≤ P0
pE

1− pE
+

(
n

2

)
P 2
E (5–6)

≤ ePE

1− PE
PE + o(1)PE = (1 + o(1))PE (5–7)

Therefore, PE is an (ϵ, δ)-approximation for EPC(G).

Case PE ≥ n−2−µ: From Theorem 3, the component sampling procedure can give

an (ϵ, δ) approximation within a polynomial time.

5.3 Vulnerability Assessment using EPC

In this section, we formulate the vulnerability assessment problems as a mathematical

programming problem and devise two approaches to overcome the difficulty of having

an exponential number of constraints in the mathematical formulation.

Linear programming for deterministic networks. Given a realization Gl of G, the

k-CNP problem in Gl can be formulated as an integer linear programming (ILP),

106

following [11].

min
∑
i<j

(1− xij) (5–8)

s. t.
n∑
i=1

si ≤ k

xij ≤ si + sj + 1− ξlij, (i, j) ∈ E

xij + xjk ≥ xik, i, j, k = 1..n

xij = xji, i, j = 1..n

s ∈ {0, 1}n, x ∈ {0, 1}n2

(5–9)

where si = 1 if vertex i is removed and si = 0, otherwise; xij represents the “disconnec-

tivity ” between a pair of nodes i and j after removing {i ∈ V |si = 1} i.e. xij = 1 if there is

no i− j path and xij = 0, otherwise.

For small networks, the P (s, x, ξl) can be solved optimally using branch-and-bound

methods. Moreover, further enhancement can be used to enable finding optimal

solutions for larger network of several hundreds of nodes. These include the sparse

metric methods in [30], that reduces the number of constraints from O(n3) to O(mn), the

removal of the integral conditions on xij that reduces the number of integral variables

from O(n2) to O(n), and specialized cutting planes [30, 45].

Two-stage stochastic programming. We propose for the k-pCNP problem a

two-stage stochastic programming. Stochastic programming has been a common

approach for optimization under uncertainty when the probability distribution governs

the data is given. A comprehensive introduction to stochastic programming can be

found in reference [69]. Our formulation is presented follows with the two highlighted

107

enhancements from [30].

min
s∈{0,1}n

E [P (s, x, ξ)] (5–10)

s. t.
n∑
i=1

si ≤ k (5–11)

whereP (s,x, ξ) = min
∑
i<j

(1− xij) (5–12)

s. t. xij ≤ si + sj + 1− ξij, (i, j) ∈ E, (5–13)

xij + xjk ≥ xik, (i, j) ∈ E, k = 1..n (5–14)

xij = xji, i, j = 1..n (5–15)

s ∈ {0, 1}n, x ∈ [0,1]n
2

(5–16)

The optimal decision on which set of vertices to remove only depends on the

given topology and the edge probabilities but not the future observations on the edge

availabilities. First stage variables s are to be decided before the actual realization of the

uncertain parameters in the adjacency matrix ξ. Our objective, the pairwise connectivity

in the residual graph, involves only the expected cost of x, the variable in the second

stage (or recourse) variables.

Discretization. To solve the stochastic program numerically, one needs to consider

all possible realization Gl ∈ SG and their probability masses fG(Gl). Then the two-stage

stochastic program can be written as an (one-level) mixed integer programming,

108

denoted by MIPF :

min
N∑
l=1

fG(G
l)
∑
i<j

(1− xlij) (5–17)

s. t.
n∑
i=1

si ≤ k (5–18)

xlij ≤ si + sj + 1− ξlij, (i, j) ∈ E, l = 1..N (5–19)

xlij + xljk ≥ xlik, (i, j) ∈ E, k = 1..n, l = 1..N (5–20)

xlij = xlji, i, j = 1..n, l = 1..N (5–21)

s ∈ {0, 1}n, xl ∈ [0, 1]n
2

, l = 1..N (5–22)

The major challenge in solving this discretized form is that there are exponential number

(N = 2|E|) of variables and constraints. Thus, solving MIPF is intractable even for very

small instances of G. To overcome this difficulty, we present in next two subsections two

approximate mathematical programs of substantially smaller sizes.

5.3.1 Approximating via the Expectation Graph

Many clustering and optimization problem on probabilistic graphs can be reduced

into equivalent problems on the (deterministic) expectation graph, constructed by

casting the edge probabilities into weights. For example, the expectation graph of G is a

(deterministic) graph with the weighted matrix ξ, where ξij = pij. The main challenge in

this approach is how to interpret the weights in a meaningful way.

109

Our first approach is to regard the weighted matrix ξ as a (binary) adjacency matrix

of a deterministic graph. Thus we obtain the following MIP, denoted by MIPE.

min
∑
i<j

(1− xij) (5–23)

s. t.
n∑
i=1

si ≤ k (5–24)

xij ≤ si + sj + 1− ξij, (i, j) ∈ E (5–25)

Constraints (5−−14), (5−−15),& (5−−16)

Not only this relaxation has polynomial time numbers of constraints and variables, but

also its optimal solution provides a lower-bound on the optimal solution of MIPF , as

stated in the following lemma.

Lemma 16. MIPE is a mixed integer programming with at most n integral variables and

O(mn) constraints. Moreover, the objective of the MIPE is at most that of the MIPF .

Proof. The number of integral variables and constraints can be proven similar to [30].

To show that the the objective of the MIPE is a lower-bound on that of the MIPF , we

construct a feasible solution (s̃, x̃) of MIPE that gives an objective equal to the optimal

objective of MIPF .

Let
(
ŝ, x̂1, . . . , x̂N

)
be an optimal solution of the MIPF . Construct a solution(

s̃ = ŝ, x̃ =
∑N

l=1 fG(G
l)x̂l
)

. The objective value of MIPE given by that solution is

∑
i<j

(1− x̃ij) =
∑
i<j

(1−
N∑
l=1

fG(G
l)x̂lij)

=
∑
i<j

N∑
l=1

fG(G
l)(1− x̂lij)

which is exactly the optimal objective of MIPF . The last equality holds because the

probabilities fG(Gl) add up to one.

110

The rest is to show that (s̃, x̃) is a feasible solution of MIPE. Clearly, s̃ satisfy (5–24)

and the integral constraints. Also since x̃ is a convex combination of x̂l, l = 1..N with the

masses fG(Gl), x̃ satisfy the constraints (5–25), (5–14), (5–15), & (5–16) as they can be

inferred from the same convex combination of the constraints (5–19) to (5–22).

One can solve MIPE optimally using the branch-and-cut method in [30] to obtain

1) a set of k critical nodes and 2) a lower-bound on the minimum expected pairwise

connectivity after removing k nodes. We note that the non-integrality of xij is essential

for MIPE. When xij is restricted to {0, 1}, e.g. in (5–9), the constraints (5–25) is

essentially xij ≤ si + sj and MIPE become equivalent to IP (5–8)-(5–9). That is the

information encoded in the edge probabilities is disregarded and only the network

topology is used in the formulation. In addition, since the convex combination of x̂l is a

fractional vector, we will not be able to derive the lower-bound given in Lemma 16.

In large networks, branch-and-cut algorithm starts to show its exponentially running

time, the following randomized rounding algorithm can be used to obtain a set of k

critical nodes. The rounding procedure is described in Algorithm 11. The algorithm

repeatedly solves an LP relaxation of MIPE and round up the maximum si to one,

provided that si is not rounded before. After k steps, k nodes that have si = 1 are

retuned as the set of the critical nodes. Since the LP relaxation has at most O(mn)

constraints solving the LP relaxation takes an O(m3n3) time [30] in the worst case. Thus

the total time complexity is at most O(km3n3).

111

Algorithm 13. Rounding on the Expectation Graph Algorithm

(REGA)

1. Obtain an LP relaxation of MIPE with the relaxed constraints
s ∈ [0, 1]n.

2. Initialize the set of selected nodes D = ∅.

3. Repeat k times the following steps

• Solve the LP relaxation

• Select u = argmax∈ V \Dsi.

• Add u to D and fix su = 1

4. Return k critical nodes in D.

5.3.2 Sample Average Approximation (SAA) Method

Our second approach to reduce the number of realizations is to apply the Sample

Average Approximation (SAA) method. We generate independently T samples

ξ1, ξ2, · · · , ξT using Monte Carlo simulation (i.e. to generate each edge (u, v) ∈ e

with probability puv). The expectation objective q(s) = E[P (s, x, ξ)] is then approximated

by the sample average q̂T (x) = 1
T

∑T
l=1

∑
i<j(1− xlij), and the new formulation is then

min 1
T

∑T
l=1

∑
i<j(1− xlij)

s. t. Constraints(5−−18)− (5−−22), replacing N with T

Under some regularity conditions 1
T

∑T
j=1

∑
i<j(1 − xlij) converges pointwise with

probability 1 to E[P (s, x, ξ)] as T → ∞. Moreover, an optimal solution of the sample

average approximation provides an optimal solution of the stochastic programming with

probability approaching one exponentially fast w.r.t. T . Formally, denote by s∗ and ŝ the

optimal solution of the stochastic programming and the sample average approximation,

112

respectively. For any ϵ > 0, it can be derived from Propostition 2.2 in [52] that

Pr [E [P (s, x̂, ξ)]− E [P (s, x∗, ξ)] > ϵ]

≤ exp

(
−T ϵ

2

n4
+ n log k

)
(5–26)

Equivalently, if T ≥ n4

ϵ2
(nk − logα), then Pr [E [P (s, x̂, ξ)]− E [P (s, x∗, ξ)] < ϵ] > 1 − α

for any α ∈ (0, 1). Although the estimation on T maybe too conservative for practical

estimates, it is expected that the optimal value and optimal solutions of the SAA problem

converge to their counterparts even with a reasonable small value of T . The description

for SAA method is summarized in Algorithm 14. The algorithm consists of two phases.

In the first phase, the delayed constraints technique is used to incrementally construct

and solve an LP relaxation of the SAA. In the second phase, the same iterative rounding

procedure in Algorithm 1 is applied to find k critical nodes by rounding up the fractional

solution.

113

Algorithm 14. Sample Ave. Approx. Algorithm (SA3)

Parameter T : the number of sampling

Phase 1: Delayed Constraints

1. Initialize an LP with the objective 1
T

∑T
l=1

∑
i<j(1−xlij) and only

the constraints s ∈ [0, 1]n, xlij ∈ [0, 1].

2. for l = 1..T do

• Generate the lth sample of G (adjacency matrix ξl).

• Add the constraints involved xlij to the LP.

• Solve the updated LP.

Phase 2: Iterative rounding

3. Initialize the set of selected nodes D = ∅.

4. Repeat k times the following steps

• Select u = arg max
i∈V \D

si.

• Add u to D and fix su = 1

• Re-solve the LP

5. Return k critical nodes in D.

5.3.3 Local Search Heuristic

A local search method described in Algorithm 15 to find the k critical nodes. The

algorithm selects k nodes in a greedy manner: each time the algorithm selects the node

that removal results in the largest degradation in terms of EPC. Moreover, the algorithm

attempts to swap a node w outside the disruptor with a node u in the disruptor that

gives the sharpest decrease in EPC. The local search terminates when no improvement

exists.

Proof of Lemma 12

114

Algorithm 15. Iterative Greedy Algorithm (IGA)

1: D ← ∅
2: for i = 1..k do

3: u = argmin
v∈V \S

EPC(G[V \(S∪{v})])

4: D ← D + {u}
5: while ∃(u, v) ∈ D × (V \D)

6: & (swapping u, v decreases the objective) do

7: D ← D + {v} − {u}
8: Output D.

Proof. This is derived directly from the definition of EPC(G). Define connuv(Gl) = 1, if

there is a path between u and v in a sample graph Gl and connuv(Gl) = 0, otherwise.

We have

EPC(G) =
N∑
l=1

fG(G
l)P(Gl) =

N∑
i=1

fG(G
l)
1

2

∑
u̸=v

connuv(Gl)

=
1

2

∑
u̸=v

N∑
l=1

fG(G
l)connuv(Gl) =

1

2

∑
u̸=v

RELu,v(G)

Proof of Lemma 13

Proof. An edge (u, v) ∈ EB is said to be undetermined, if 0 < pAuvp
B
uv < 1. We prove the

lemma by induction on the number of undetermined edges within EB, denoted by µB.

Basis: If µB = 0, both GA and GB are deterministic graph, and the statement holds

trivially. Assume that the lemma is true when µB = t ≥ 0. We show that the lemma is

also true when µB = t+ 1.

Induction step: Assume that µB = t + 1, pick an arbitrary edge (u, v) ∈ EB and

consider the branching on (u, v):

EPC(GA) = pAuvEPC(G+A) + (1− pAuv)EPC(G−A). (5–27)

115

where G+A is obtained from GA by assigning puv = 1; and G−A is obtained from GA by

removing the edge (u, v).

Similarly, we have

EPC(GB) = pBuvEPC(G+B) + (1− pBuv)EPC(G−B).

Since GA ≼ GB, it can be verified that G+A ≼ G
+
B and G−A ≼ G

−
B . Note that the pairs

(G+A ,G
+
B) and (G−A ,G

−
B) have at most t undetermined edges. By the induction hypothesis,

we have

EPC(GB) ≥ pBuvEPC(G+A) + (1− pBuv)EPC(G−A)

≥ pAuvEPC(G+A) + (1− pAuv)EPC(G−A) = EPC(GA).

The last inequality holds because pAuv ≥ pNuv and EPC(G+A) ≥ EPC(G−A) which can

be shown based on the fact that each sample of graph G+A can be generated by first

generating a sample of G−A and then add (u, v) the sample. Obviously, adding an edge

to a (deterministic) graph will not decrease the pairwise connectivity. Thus, the lemma

holds for all µB ≥ 0.

116

CHAPTER 6
CASCADING-FAILURES IN NETWOKRS

In this chapter, we formulate the measuring vulnerabiltiy in the presence of

cascading-failure as an optimization problem: the Cost-effective, massive and outbreak

problem (CFM). In Section 6.1, we analyze the propagation process on power-law

networks to give an lower-bound on the seeding size. We present VirAds, a scalable

algorithm to find a minimal seeding for the CFM problem in Section 6.2. The hardness

of finding a cost-effective seeding is addressed in Section 6.3. Finally, we perform

extensive experiments on large social networks such as Facebook and Orkut to

confirm the efficiency of our proposed algorithm and analyze the results to give new

observations to information diffusion process in networks.

6.1 Seeding Cost of Massive Outbreak

In this section, we exploit the power-law topology found in most complex networks

[12, 13, 25] to demonstrate that when the propagation hop is limited, a large number

of seeding nodes is needed to spread the influence throughout the network. The

size of seeding is proved to be a constant fraction of the number of vertices n, which

is prohibitive for large social networks of millions of nodes. We first summarize the

well-known power-law model in [3]; then we use the model to prove the prohibitive

seeding cost for the CFM problem.

6.1.1 Power-law Network Model.

Many complex systems of interest including OSNs are found to have the degree

distributions approximately follows the power laws [12, 13, 25]. That is the fraction of

nodes in the network having k connections to other nodes is proportional to k−γ, where

γ is a parameter whose value is typically in the range 2 < γ < 3. Those networks have

been used in studying different aspects of the scale-free networks [3, 5, 39, 41]. We

follow the P (α, γ) power-law model in [3] in which the number of vertices of degree k

117

is ⌊ eα
kγ
⌋ where eα is the normalization factor. For convenience, we shall refer to such a

network as a P (α, γ) network.

We can deduce that the maximum degree in a P (α, γ) network is e
α
γ (since for

k > e
α
γ , the number of edges will be less than 1). The number of vertices and edges are

n =
e
α
γ∑

k=1

eα

kγ
≈

ζ(γ)eα if γ > 1

αeα if γ = 1

e
α
γ

1−γ if γ < 1

,

m =
1

2

e
α
γ∑

k=1

k
eα

kγ
≈

1
2
ζ(γ − 1)eα if γ > 2

1
4
αeα if γ = 2

1
2
e
2α
γ

2−γ if γ < 2

(6–1)

where ζ(γ) =
∑∞

i=1
1
iγ

is the Riemann Zeta function [3] which converges for γ > 1 and

diverges for all γ ≤ 1. Without affecting the conclusion, we will simply use real numbers

instead of rounding down to integers. The error terms are sufficiently small and can be

bounded in our proofs.

While the scale of the network depends on α, the parameter γ decides the

connection pattern and many other important characterizations of the network. For

instance, the larger γ, the sparser and the more “power-law” the network is. Hence, the

parameter γ is often regarded as the characteristic constant for scale-free networks.

6.1.2 Prohibitive Seeding Costs

We prove that the seeding must contain at least Ω(n) vertices if the propagation is

locally bounded. The result is stated in the following theorem.

Theorem 6.1. Given a power-law network G ∈ P (α, γ), with γ > 2 and constant

0 < ρ < 1, any d-seeding is of size at least Ω(n).

Proof. The proof consists of two parts. In the first part, we show that the volume i.e. the

total degree of vertices, of any d-seeding must be Ω(m). In the second part, we prove

118

R
0

R
1

R
2

R
d

.

.

.

Figure 6-1. The influence propagation in the network.

that any subset of vertices S ⊂ V with volume vol(S) = Ω(m) in a power-law network

with power-law exponent γ > 2, will imply that |S| = Ω(n). Thus, the theorem follows.

In the first part, we consider two separate cases

Case ρ > 1
2
: Let S = R0 be the optimal solution for the CFM problem on G = (V,E),

and S = R0, R1, R2, . . . , Rd are vertices that become active at round 0, 1, 2, . . . , d,

respectively (see Fig. 6-4). Notice that {Ri}di=0 form a partition of V . Moreover, for each

1 ≤ t ≤ d the following inequality holds.

|ϕ(Rt,

t−1∪
i=0

Ri)| ≥
ρ

1− ρ

(
|ϕ(Rt,

d∪
j=t+1

Rj)|+ 2|ϕ(Rt, Rt)|

)
(6–2)

where ϕ(A,B) denotes the set of edges connecting one vertex in A to one vertex in B.

The inequality means that at least a fraction ρ
1−ρ among edges incident with the vertices

activated in round t must be incident with active vertices in the previous rounds.

Sum up all inequalities in (6–2) for t = 1..d, we have

d∑
t=1

|ϕ(Rt,
t−1∪
i=0

Ri)| ≥
ρ

1− ρ

d∑
t=1

(
|ϕ(Rt,

d∪
j=t+1

Rj)|+ 2|ϕ(Rt, Rt)|

)

119

Eliminate the common factors in both sides, we have

d−1∑
i=0

|ϕ(Ri,

d∪
t=i+1

Rt)|

≥ ρ

1− ρ

d−1∑
j=1

|ϕ(Rj,
d∪

t=j+1

Rt)|+ 2
d−1∑
t=1

|ϕ(Rt, Rt)|

After some algebra, we obtain

vol(R0) ≥ |ϕ(R0,
d∪
t=1

Rt)|

≥ 2ρ− 1

1− ρ

d−1∑
j=1

|ϕ(Ri,

d∪
t=j+1

Rt)|+ 2
d∑
t=1

|ϕ(Rt, Rt)|

⇔ ρ

1− ρ
|ϕ(R0, V)| − |ϕ(R0, R0)|

≥ 2ρ− 1

1− ρ
|E|+ 3− 4ρ

1− ρ

d∑
t=1

|ϕ(Rt, Rt)| (6–3)

Hence, when ρ > 1/2, vol(R0) ≥ 2ρ−1
1−ρ |E| = Ω(m) for any d-seeding R0.

Case ρ ≤ 1
2
: We say that an edge is active if it is incident to at least one active

vertex. At round t = 0, there are at most vol(R0) active edges, those who are incident

to R0. Eq. 6–2 implies that the number of active edges in each round increases at most

ρ−1 times. After d rounds, the number of active edges will be bounded by vol(R0) × ρ−d.

Since, all edges are active at the end we have the inequality:

vol(R0) ≥ ρ−d|E|.

In the second part of the proof, we show that if a subset S ⊂ V has vol(S) = Ω(m), then

|S| = Ω(n) whenever the power-law exponent γ > 2. Assume that vol(S) ≥ cm, for some

positive constant c. The size of S is minimum when S contains only the highest degree

vertices of V . Let k0 be the minimum degree of vertices in S in that extreme case, by Eq.

120

6–1 we have

cm =
c

2

e
α
γ∑

k=1

k
eα

kγ
≤ vol(S) ≤ 1

2

e
α
γ∑

k=k0

k
eα

kγ

Simplify two sides, we have

k0−1∑
k=1

1

kγ−1
≤ (1− c)

e
α
γ∑

k=1

1

kγ−1
= (1− c)ζ(γ − 1)

Since, the zeta function ζ(γ − 1) converges for γ > 2, there exists a constant kρ,γ that

depends only on ρ and γ that satisfies

kρ,γ∑
k=1

1

kγ−1
> (1− c)ζ(γ − 1)

Obviously, we have k0 ≤ kρ,γ. Thus, the number of vertices that are in S is at least

e
α
γ∑

k=kρ,γ

eα

kγ
= (1−

kρ,γ∑
k=1

1

kγ
)n = Ω(n)

We have the last step because the sum
∑kρ,γ

k=1
1
kγ

is bounded by a constant since kρ,γ is a

constant.

In both cases ρ > 1/2 and ρ ≤ 1/2, the size of a d-seeding set is at least Ω(n).

However, we can see a clear difference in the propagation speed with respect to

d between two cases. When ρ < 1/2, the number of active edges can increase

exponentially (but is still bounded if d is a constant) and, it is likely that the number

of active vertices also exponentially increases. In contrast, when ρ > 1/2, exploding in

the number of active edges (and hence active vertices) is impossible as the volume of

the d-seeding is tied to the number of edges m by a fixed constant 2ρ−1
1−ρ , regardless of

the value of d.

6.2 Algorithm to Identify the Minimum Outbreak Seeding

In order to understand the influence propagation when the number of propagation

hops is bounded, we propose VirAds, an efficient algorithm for the CFM problem. With

121

the huge magnitude of OSN users and data available on OSNs, scalability becomes the

major problem in designing algorithm for CFM. VirAds is scalable to network of hundred

of millions links and provides high quality solutions in our experiments.

Before presenting VirAds, we consider a natural greedy for the CFM problem

in which the vertex that can activate the most number of inactive vertices within d

hops is selected in each step. This greedy is unlikely to perform well on practice for

following two reasons. First, at early steps, when not many vertices are selected, every

vertex is likely to activate only itself after being chosen as a seed. Thus, the algorithm

cannot distinguish between good and bad seeds. Second, the algorithm suffers serious

scalability problems. To select a vertex, the algorithm has to evaluate for each vertex v

how many vertices will be activated after adding v to the seeding, e.g. by invoking an

O(m + n) Breadth-First Search procedure rooted at v. In the worst-case when O(n)

vertices are needed to evaluate, this alone can take O(n(m+ n)). Moreover, as shown in

the previous section, the seeding size can be easily Ω(n); thus, the worst-case running

time of the naive greedy algorithm is O(n2(m + n)), which is prohibitive for large-scale

networks.

As shown in Algorithm 16, our VirAds algorithm overcomes the mentioned problems

in the naive greedy by favoring the vertex which can activate the most number of edges

(indeed, it also considers the number of active neighbor around each vertex). This

avoids the first problem of the naive greedy algorithm. At early steps, the algorithm

behaves similar to the degree-based heuristics that favors vertices with high degree.

However, when a certain number of vertices are selected, VirAds will make the selection

based on the information within d-hop neighbor around the considered vertices rather

than only one-hop neighbor as in the degree-based heuristic.

The scalability problem is tackled in VirAds by efficiently keeping track of the

following measures for each vertex v.

• rv: the round in which v is activated

122

Algorithm 16: VirAds: Finding Influence Nodes in Networks
Input: Graph G = (V,E), 0 < ρ < 1, d ∈ N+

Output: A small d-seeding
n
(e)
v ← d(v), n

(a)
v ← ρ · d(v), rv ← d+ 1, v ∈ V ;

r
(i)
v = 0, i = 0..d, P ← ∅;

while there exist inactive vertices do
repeat

u← argmaxv/∈P {n(e)
v + n(a)

v };
Recompute n(e)

v as the number of
new active edges after adding u.

until u = argmaxv/∈P {n(e)
v + n(a)

v };
P ← P ∪ {u};
Initialize a queue: Q← {(u, rv)};
ru ← 0;
foreach x ∈ N(u) do

n
(a)
x ← max{n(a)

x − 1, 0};
while Q ̸= ∅ do

(t, r̃t)← Q.pop();
foreach w ∈ N(t) do

foreach i = rt to min{r̃t − 1, rw − 2} do
r
(i)
w = r

(i)
w + 1;

if (r
(i)
w ≥ ρ · dw) ∧ (rw ≥ d) ∧ (i+ 1 < d) then

foreach x ∈ N(w) do
n
(a)
x ← max{n(a)

x − 1, 0};
rw = i+ 1;
if w /∈ Q then

Q.push((w, rw));

Output P ;

• n
(e)
v : The number of new active edges after adding v into the seeding

• n
(a)
v : The number of extra active neighbors v needs in order to activate v

• r
(i)
v : The number of activated neighbors of v up to round i where i = 1..d.

Given those measures, VirAds selects in each step the vertex u with the highest

effectiveness which is defined as n(e)
u + n

(a)
u . After that, the algorithm needs to update the

measures for all the remaining vertices.

123

Except for n(e)
v , we show that all other measures can be effectively kept track of in

only O((m + n)d) during the whole algorithm. When a vertex u is selected, it causes

a chain-reaction and activate a sequence of vertices or lower the rounds in which

vertices are activated. New activated vertices together with their active rounds are

successively pushed into the queue Q for further updating much like what happens in

the Bellman-Ford shortest-paths algorithm. Everytime we pop a vertex v from Q, if rv,

the current active round of v, is different from r̃v, the active round of v when v is pushed

into Q, we update for each neighbor w of v the values of rw and r(i)w . If any neighbor w of

v changes its active round and w is not in Q, we push w into Q for further update. The

update process stops when Q is empty. Note that for each node u ∈ V , changing of ru

can cause at most d update for r(.)w where w is a neighbor of u. For all neighbors of u, the

total number of update is, hence, O(d · d(u)). Thus, the total time for updating r(.)w ∀w ∈ V

in VirAds will be at most O((m+ n) · d).

To maintain n(e))
v , the easiest approach is to recompute all n(e)

v . This approach,

called Exhaustive Update, is extremely time-consuming as discussed in the naive

greedy. Instead, we only update n(e)
v when “necessary”. In details, vertices are stored in

a max priority queue in which the priority is their effectiveness. In each step, the vertex

u with the highest effectiveness is extracted and n(e)
u is recomputed. If after updating, u

still has the highest effectiveness, u is then selected. Otherwise, u is pushed back to the

priority queue, and the new vertex with the highest effectiveness is considered, and so

on.

Approximation Ratio for Power-law Networks.

The CFM problem can be easily shown to be NP-hard by a reduction from the set

cover problem. Thus, we are left with two choices: designing heuristics which have no

worst-case performance guarantees or designing approximation algorithms which can

guarantee the produced solutions are within a certain factor from the optimal. Formally,

124

a β- approximation algorithm for a minimization (maximization) problem always returns

solutions that are at most β times larger (smaller) than an optimal solution.

Unfortunately, there is unlikely an approximation algorithm with factor less than

O(log n) as shown in next section. However, if we assume the network is power-law, our

VirAds is an approximation algorithm for CFM with a constant factor.

Theorem 6.2. In power-law networks, VirAds is an O(1) approximation algorithm for the

CFM problem for bounded value of d.

The theorem follows directly from the result in previous section that the optimal

solution has size at least Ω(n) in power-law networks. Thus, the ratio between the

VirAds’s solution and the optimal solution is bounded by a constant.

6.3 Hardness of the CFM Problem

This section provides the hardness of approximating the optimal solutions of the

CFM problem, the impossibility of finding near-optimal solutions in polynomial time.

In previous Section, we can obtain O(1) approximation algorithms for CFM when the

network is power-law. However, without the power-law assumption, there is no algorithm

that can approximate the problem within a factor less than O(log n). We first prove the

hardness for the case when d = 1, which is an essential step in proving the hardness for

the general case d ≥ 1. We begin with the Feige’s reduction for proving lnn threshold for

the set cover problem. Our proof for the hardness of approximation for the CFM problem

requires understanding the Feige’s construction together with its parameter settings.

6.3.1 Feige’s Reduction for Set Cover

Feige presented a reduction from a k-prover proof system for a MAX 3SAT-5

instance ϕ that is a conjunctive normal form formula consists of n variables and 5n
3

clauses of exactly 3 literals. The verifier interacts with k provers, and ask provers

different questions based on a random string r; each question involves l/2 clauses and

l/2 variables. If the formula ϕ is satisfiable, then the provers have a strategy that cause

the verifier accepts for all random strings. If only a (1 − ϵ) fraction of the clauses in ϕ

125

are simultaneously satisfiable, then for all strategies of the provers, the verifier weakly

accept with a probability at most k2 · 2−cl, where c is a constant that depends only on ϵ.

The core of the Set cover gadget is a partition system B(m,L, k, d), where B is a

ground set of m points. The partition system is a collection of L = 2l partitions P1, . . . , PL

of B, each partition Pi has exactly k disjoint subsets pi,1, . . . , pi,k. Any cover of m points

in B requires at least d = (1− 2
2
)k lnm subsets. The condition to make constructing such

a system possible is that k < lnm
3 ln lnm

.

Let R = (5n)l denote the number of possible random strings for the verifier. We

make R copies of partition system B. Let Br denote the copy of the partition associated

with the random string r and pri,j the copy of set pi,j in Br.

We now ready to describe the instance of Set Cover in the Feige’s reduction.

The universal set U =
∪
r∈R

Br contains N = |U| = mR points; and the set system is

S = {Sq,a,i}q,a, where i can be deduced from syntax of (q, a). Each set Sq,a,i corresponds

to a question-answer pair (q, a) of the ith prover and Sq,a,i =
∪

(q,i)∈r

prar,i where (q, i) ∈ r

means on random string r, the ith prover receives question q, and ar is the assignment

of variables extracted from a.

As long as k22−cl < 8
k3 ln2m

, we obtain the hardness result (1 − 4
k
) lnm i.e. if formula

ϕ is satisfiable, then mR points in U can be covered by kQ subsets, and if only (1 − ϵ)

fraction of the clauses are simultaneously satisfiable, the minimum set cover has size at

least (1− 4
k
) lnm kQ. Here, Q is the set of all nl (5/3)l/2 possible questions. The condition

can be satisfied with l > 1
c
(5 log k + 2 log lnm).

The hardness ratio (1− f(k)) lnm of the set cover is obtained from the following key

lemma.

Lemma 17. (Lemma 4.1 [38]) If ϕ is satisfiable, then the above set of N = mR points

can be covered by kQ subsets. If only a (1 − ϵ) fraction of the clauses in ϕ are simul-

taneously satisfiable, the above set requires (1 − 2f(k))kQ lnm subsets in order to be

covered, where f(k)→ 0 as k →∞.

126

Note that lnm = (1− ϵ) lnN by the setting of n, l, and m in the proof. Thus, the final

hardness ratio is (1− ϵ) lnN , where N = |U|. However, we can choose different settings

of n, l, and m and obtain different hardness ratios.

We finish the present of Feige’s reduction by giving upper bounds for quantities that

appear later in our proofs.

• The number of subsets |S| ≤ |Q|22l. Since, for each question q ∈ Q, there are at
most 22l answers of 2l bit length.

• The maximum size of a subset ∆S = max
S∈S
|S| ≤ m3l/2. Since each i and q ∈ Q

there are at most 3l/2 random strings r such that the verifier makes query q to the
ith prover and |prar,i| ≤ m.

• The maximum frequency of a point (element) in U : f ≤ k2l. Because, for a pair
(q, i), each partition prar,i is included at most 2l times, plus each point in Br appears
in exactly k partitions.

6.3.2 One-hop CFM

We prove that the CFM problem cannot be approximated within a factor ln∆ −

O(ln ln∆) in graphs of maximum degree ∆, unless P=NP. The proof uses a gap-reduction

from an instance of the Bounded Set Cover problem (SCB) to an instance of CFM

problem whose degrees are bounded by B′ = B poly log B. For background on

hardness of approximation and gap-reduction we refer to reference [8].

Definition 8 (Bounded Set Cover). Given a set system (U ,S), where U = {e1, e2, . . . , ens}

is a universe and S is a collection of subsets of U . Each subset in S has at most B ele-

ments and each element belongs to at most B subsets, for a predefined constant B > 0.

A cover is a subfamily C ⊆ S of sets whose union is U . Find a cover which uses the

minimum number of subsets.

We state the tight inapproximability result for the bounded set cover by Trevisan [74]

in the following lemma.

Lemma 18. There exist constants B0, c0 > 0 such that for every B ≥ B0 it is NP-hard to

approximate the SCB problem within a factor of lnB − c0 ln lnB.

127

S1

e1

e2

e3

e4

e5

e|U|

x1

x2

xt

x'1

x'2

x't

S3

S2

D’ D S U

S|S|

.
. . . .

. . . .

Figure 6-2. Reduction from SCB to CFM when d = 1

The proof in [74] reduces an instance of GAP − SAT1,γ of size nS to an instance

F = (U ,S) of SCB by settings parameters l,m in Feige’s construction [38] to be

θ(ln lnB) and B

poly log(B)
, respectively. Denote by ∆S the maximum cardinality of sets,

and by f the maximum frequency of elements in U , we have

• |U| = mnlS poly logB, |S| = nlS poly log B

• ∆S ≤ B, f ≤ poly log B for sufficient large B.

SCB-CFM reduction. For each instance F = (U ,S) of SCB, we construct a graph

H = (V,E) as follows (Fig. 6-2):

• Construct a bipartite graph with the vertex set U ∪ S and edges between S and all
elements ei ∈ S, for each S ∈ S.

• Add a set D consisting of t vertices and a set D′ with same number of vertices, say
D = {x1, x2, . . . , xt} and D′ = {x′1, x′2, . . . , x′t}, where t = |U|

B ln2B
.

• Connect xi to x′i, ∀i = 1 . . . t. This enforces the selection of xi in the optimal CFM.

• Connect each vertex ej ∈ U to ⌈ ρ
1−ρf(ej)⌉ − 1 and each vertex Sk ∈ S to ⌈ ρ

1−ρ |Sk|⌉
vertices in D, where f(ej) is the frequency of element ej. During the connection,
we balance the degrees of vertices in D.

We can assume w.l.o.g. that optimal solutions of CFM contains all vertices in D

but not ones in D′. Then, all vertices in S will be activated after the first round, and

128

the a vertex in U is activated if and only if one of its neighbors in S is selected into the

solution. Thus, the following lemma holds.

Lemma 19. The size difference between the optimal CFM of H and the optimal SCB of

F is exactly the cardinality of D, i.e., OPTCFM(H) = OPTSC(F) + t.

The key to preserve the hardness ratio is to keep the degree of vertices in H

bounded and the gap between the optimal solutions’ sizes small.

Lemma 20. If t = |U|
B ln2B

, then the maximum degree of vertices in H will be B′ = ∆(H) =

O(B poly log B).

Proof. We can verify that vertices in S and U have degree O(B). Vertices in D have

degrees at most vol(D)
t

+ 1, where vol(D) is the total degree of vertices in D. Define

ϕ(X,Y) as the set of edges crossing between two vertex subsets X and Y . We have

vol(D) = |ϕ(D,D′)|+ |ϕ(D,U)|+ |ϕ(D,S)|

= |D|+
∑
Sk∈S

⌈ ρ

1− ρ
|Sk|⌉+

∑
ej∈U

⌈ ρ

1− ρ
f(ej)− 1⌉

≤ 2ρ

1− ρ
|S|B + |S|+ t =

(
2ρ

1− ρ
B + 1

)
|S|+ t (6–4)

We have used the facts that
∑
Sk∈S

|Sk| =
∑
ej∈U

f(ej) and |Sk| ≤ B, ∀Sk ∈ S.

Thus,

B′ ≤ 1

t

((
2ρ

1− ρ
B + 1

)
|S|+ t

)
+ 1

≤
(

2ρ

1− ρ
B + 1

)
B ln2B nlS poly log B

mnl poly log B

≤ O(B poly log B) (6–5)

This completes the proof.

Theorem 6.3. When d = 1, it is NP-hard to approximate the CFM problem in graphs with

degrees bounded by B′ within a factor of lnB′ − c1 ln lnB′, for some constant c1 > 0.

129

Proof. We prove by contradiction. Assume there exists algorithm A to find in graph with

degrees bounded by B′ and d = 1 a CFM of size at most (lnB′ − c1 ln lnB′)OPTCFM ,

where OPTCFM is the size of an optimal CFM. Let F = (U ,S) be an instance of SCB

with the optimal solution of size OPTSC . Construct an instance H of CFM problem using

the reduction SCB-CFM as shown above. From (6–5), there exists constant β > 0

so that B′ ≤ B lnβ B. Using algorithm A on H, we obtain a solution of size at most

(lnB′ − c1 ln lnB′)OPTCFM . We can then convert that to a solution of SCB by excluding

vertices in D (see Lemma 19) and obtain a set cover of size at most

(lnB′ − c1 ln lnB′)(OPTSC + t)− t (6–6)

Since each set in S can cover at most B elements, we have OPTSC ≥ |U|
B

= tB ln2 B
B

, thus

t ≤ OPTSC

ln2B
. If we select c1 = c0 + β + 1, the solution of SCB is then, after some algebra,

at most (lnB − c0 ln lnB)OPTSC that contradicts the Lemma 18.

Similarly, with appropriate setting in Feige’s construction [38], we obtain the

following hardness result regarding the network size n (the proof detail can be found

in the technical report on our website).

Theorem 6.4. For any ϵ > 0, the CFM problem, when d = 1, cannot be approximated

within a factor (1
2
− ϵ) lnn, unless NP ⊂ DTIME(nO(log logn)).

Proof. We use the same gadget in Fig. 6-2 to prove the hardness for CFM. Since, we

no longer need to keep degree of vertices in the gadget bounded, we form a clique with

vertices in D.

We can connect each v ∈ (S ∪ U) to µv vertices in D. That is

|D| = O(max
v∈(S∪U)µv

θ(
ρ

1− ρ
∆S)) = O(∆S) = O(m3l/2)

130

Or equivalently

|D|2 = O(
∑

v∈(S∪U)

d(v) + x0(|S|+ |U|) = O(2
∑
v∈U

d(v) + |S|+ |U|) = O(mRk 2l)

To summarize, the sufficient condition is

|D| = O(m2θ(l) + (mRk2l)1/2). (6–7)

By Lemma 17 and the construction, the hardness ratios of our problems are given

by
(1− 4

k
)kQ lnm+ |D|
kQ+ |D|

.

Unfortunately, with the same setting in the Feige’s reduction, |D| = O(∆S) =

O((5n)
2l
ϵ 2θ(l)), the above hardness ratio gets arbitrary close to 1. Hence we use a

different setting in which m = (5n)cl with a small constant c > 0 to reduce the maximum

degree. The consequence is that the inapproximability ratio is reduced accordingly.

The optimal setting to get the best inapproximability ratio is to set m = (5n)l(1−ϵ) for

some ϵ > 0. Then, N = mR = (5n)l(2−ϵ), or m = N
1−ϵ
2−ϵ . From (6–7), it is sufficient that

|D| = nl
2θ(l)

nl
ϵ
2

= o(Q)

Hence, the hardness ratio will be

(1− 4
k
)kQ lnm+ o(Q)

kQ+ o(Q)
> (1− 5

k
) lnm

The number of vertices in the graph, denoted by nH, is

nH = 2|D|+ |S|+ |U| < θ(m3l/2) + nl22l
(
5

3

)l/2
+ (5n)2l−ϵ < 2|U| = 2N

Finally, the hardness ratio is at least

(1− 5

k
) ln
(nH

2

)1/2− ϵ
4−2ϵ

> (1− 5

k
)
1

2

(
1− ϵ

2− ϵ

)
lnnH − θ(1) >

1

2
(1− ϵ) lnnH.

Here, we assume k is sufficiently large and ϵ is sufficiently small.

131

Note that Theorems 6.3 and 6.4 are incomparable in general. Let ∆ be the

maximum degree, Theorem 6.3 implies the hardness of approximation with factor

(1 − ϵ) ln∆, which is larger than (1
2
− n) lnn if ∆ ≈ n, but smaller when ∆ <

√
n, for

example in power-law graphs with the exponent γ > 2. In addition, the Theorem 6.4

uses a stronger assumption than that in Theorem 6.3.

6.3.3 Multiple-hop CFM

We now present a gap reduction from the CFM problem to the one-hop CFM

problem with d ≥ 2. The hardness result follows immediately by the Theorem 6.3 in the

previous section.

Given a graph G = (V,E) as an instance of the CFM problem. We will construct an

instance G′ = (V ′, E ′) of the CFM problem as follows (and as illustrated in Fig. 6-4). We

w1

u uv1

 . . .

v

w2 Wc(ρ)

uv2 uvd-1
 . . .

Figure 6-3. The transmitter gadget.

add c(ρ) vertices w1, w2, . . . , wc(ρ), called flashpoints, where c(ρ) = min{t ∈ N | t−1
t+1
≤ ρ <

t
t+1
}. These vertices will be selected at the beginning to kick off the activation of other

nodes. Furthermore, each “flashpoint” wp is connected to a dummy vertex zp.

Replace each edge (u, v) ∈ E by a gadget called transmitter. The transmitter

connecting vertex u and v is a chain of d − 1 path, named uv1 to uvd−1. The vertex u

is connected to uv1, uv1 is connected to uv2 and so on, vertex uvd−1 is connected to v.

Each vertex uvi, i = 1..d − 1 is connected to all flashpoints. An example for transmitter

is shown in Fig. 6-3. The transmitter is designed so that if all flashpoints and vertex u

are selected at the beginning, then vertex uvd−1 will be activated after d − 1 rounds.

132

 . . . a

c

d d

b a

c

d

w1 . .

.

w2 Wc(ρ)

(V, E)G = (V’, E’)G’ =

One-hop CFM Multiple-hop CFM

b

Figure 6-4. Gap-reduction from one-hop CFM to d-hop CFM.

Hence, the number of activated neighbors of v after d − 1 rounds will equal the number

of selected neighbors of v in the original graph.

Finally, we replace each edge (wp, zp) by a transmitter. In order to activate all

dummy vertices zp after d rounds, we can assume, w.l.o.g., that all flashpoints must

be selected in an optimal solution. The following lemma follows directly from the

construction.

Lemma 21. Every solution of size k for the one-hop (d = 1) CFM problem in G induces

a solution of size k + c(ρ) for the d-hop CFM problem in G′.

On another direction, we also have the following lemma.

Lemma 22. An optimal solution of size k′ for the d-hop CFM problem induces a size

k′ − c(ρ) solution for the one-hop CFM problem in G.

Proof. For a transmitter connecting u to v, if the solution of the d-hop CFM problem

contains any of the intermediate vertices uv1, . . . , uvd−1, we can replace that vertex in

the solution with either u or v to obtain a new solution of same size (or less). Hence, we

can assume, w.l.o.g., that none of the intermediate vertices are selected. Therefore, all

flashpoints must be selected in order to activate the dummy vertices. It is easy to see

that the solution of d-hop CFM excluding the flashpoints will be a solution of one-hop

CFM in G with size k′ − c(ρ).

133

Note that the number of vertices in G′ is upper-bounded by dn2 i.e. ln |V ′| <

2ln|V | + lnd. Thus, using the same arguments used in the proof of Theorem 6.4, we

can show that a (1
4
− ϵ) lnn approximation algorithm algorithm lead to a (1

2
− ϵ) lnn

approximation algorithm for the one-hop CFM problem (contradicts Theorem 6.4).

Theorem 6.5. The CFM problem cannot be approximated within (1
4
− ϵ) log n for d ≥ 1,

unless NP ⊂ DTIME(nO(log logn))

6.4 Empirical Study

In this section we perform experiments on OSNs to show the efficiency of our

algorithms in comparison with simple degree centrality heuristic and study the trade-off

between the number of times the information is allowed to propagate in the network and

the seeding size.

6.4.1 Comparing to Optimal Seeding

One advantage of our discrete diffusion model over probabilistic ones [49, 50] is

that the exact solution can be found using mathematical programming. This enables us

to study the exact behavior of the seeding size when the number of propagation hop

varies.

 3

 4

 5

 6

 7

 8

 1 1.5 2 2.5 3 3.5 4

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds (d)

IP (Optimal)
Max Degree

VirAds

A ρ = 0.4

 6

 6.4

 6.8

 7.2

 7.6

 8

 1 1.5 2 2.5 3 3.5 4

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds (d)

IP (Optimal)
Max Degree

VirAds

B ρ = 0.6

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 1 1.5 2 2.5 3 3.5 4

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds (d)

IP (Optimal)
Max Degree

VirAds

C ρ = 0.8

Figure 6-5. Seeding size (in percent) on Erdos’s Collaboration network. VirAds produces
close to the optimal seeding in only fractions of a second (in comparison to 2
days running time of the IP(optimal))

134

We formulate the CFM problem as an 0 − 1 Integer Linear Programming (ILP)

problem below.

minimize
∑
v∈V

x0v (6–8)

subject to
∑
v∈V

xdv ≥ |V | (6–9)

∑
w∈N(v)

xi−1
w + ⌈ρ · d(v)⌉xi−1

v ≥ ⌈ρ · d(v)⌉ xiv

∀v ∈ V, i = 1..d (6–10)

xiv ≥ xi−1
v ∀v ∈ V, i = 1..d (6–11)

xiv ∈ {0, 1} ∀v ∈ V, i = 0..d (6–12)

where xiv =

0 if v is inactive at round i

1 otherwise
.

The objective of the ILP is to select a minimum number of seeds at the beginning.

The constraint (2) guarantees all nodes are activated at the end, while (3) deals with

propagation condition; the constraint (4) is simply to keep vertices active once they are

activated.

We solve the ILP problem on Erdos collaboration networks, the social network of

famous mathematician, [13]. The network consists of 6100 vertices and 15030 edges.

The ILP is solved with the optimization package GUROBI 4.5 on Intel Xeon 2.93 Ghz

PC and setting the time limit for the solver to be 2 days. The running time of the IP

solver increases significantly when d increases. For d = 1, 2, and 3, the solver return the

optimal solutions. However, for d = 4, the solver cannot find the optimal solutions within

the time limit and returns sub-optimal solutions with relative errors at most 15%.

The optimal (or sub-optimal) seeding sizes are shown in Figs. 6-5A, 6-5B, and 6-5C

for ρ = 0.4, 0.6 and 0.8, respectively. VirAds provides close-to-optimal solutions and

performs much better Max Degree. Especially, when ρ = 0.8 the VirAds’s seeding is only

135

different with the optimal solutions by one or two nodes. In addition, VirAds only takes

fractions of a second to generate the solutions.

As proven in Section 6.1, the seeding takes a constant fraction of nodes in the

network. For Erdos Colloboration Network, the seeding consists of 3.8% to 7% the

number of nodes in the networks. Further, the seeding can consist as high as 20% to

40% nodes in the network for larger social networks in next section.

Although the mathematical approach can provide accurate measurement on

the optimal seeding size, it cannot be applied for larger networks. The rest of our

experiments measures the quality and scalability of our proposed algorithm VirAds on a

collection of large networks.

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds(d)

Random
Max Degree

Exhaustive Update
VirAds

A Physics

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds(d)

Random
Max Degree

Exhaustive Update
VirAds

B Facebook

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6

S
ee

di
ng

 s
iz

e
(p

er
ce

nt
)

Number of Rounds(d)

Random
Max Degree

VirAds

C Orkut

Figure 6-6. Seeding size when the number of propagation hop d varies (ρ = 0.3). VirAds
consistently has the best performance.

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

Number of Rounds(d)

Random
Max Degree

Exhaustive Update
VirAds

A Physics

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

Number of Rounds(d)

Random
Max Degree

Exhaustive Update
VirAds

B Facebook

 10

 100

 1000

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

Number of Rounds(d)

Random
Max Degree

VirAds

C Orkut

Figure 6-7. Running time when the number of propagation hop d varies (ρ = 0.3). Even
for the largest network of 110 million edges, VirAds takes less than 12
minutes.

136

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100

F
ra

c
ti
o

n
 o

f
n

o
d

e
s
 [

p
e

rc
e

n
t]

 (
lo

g
-s

c
a

le
)

Degree (log-scale)

A Physics

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

F
ra

c
ti
o

n
 o

f
n

o
d

e
s
 [

p
e

rc
e

n
t]

 (
lo

g
-s

c
a

le
)

Degree (log-scale)

B Facebook

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

F
ra

c
ti
o

n
 o

f
n

o
d

e
s
 [

p
e

rc
e

n
t]

 (
lo

g
-s

c
a

le
)

Degree (log-scale)

C Orkut

Figure 6-8. Degree distribution of studied networks

6.4.2 Large Social Networks

We select networks of various sizes including Coauthors network in Physics

sections of the e-print arXiv [49], Facebook [76] and Orkut [59], a social networking run

by Google. Links in all three networks are undirected and unweighted. The sizes of the

networks are presented in Table 6-1. The degree distributions of those networks are

shown in Fig. 6-8.

Table 6-1. Sizes of the investigated networks

Physics Facebook Orkut
Vertices 37,154 90,269 3,072,441

Edges 231,584 3,646,662 223,534,301

Avg. Degree 12.5 80.8 145.5

Physics: We shall refer the physics coauthors network as Physics network or simply

Physics. Each node in the network represents an author and there is an edge between

two authors if they coauthor one or more papers. Facebook dataset consists 52% of the

users in the New Orleans [76]. Orkut dataset is collected by performing crawling in last

2006 [59]. It contains about 11.3% of Orkut’s users.

6.4.3 Solution Quality in Large Social Networks

We compare our VirAds algorithm with the following heuristics Random method

in which vertices are picked up randomly until forming a d-seeding and Max Degree

method in which vertices with highest degree are selected until forming a d-hop seeding.

137

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
si

ze
 o

f d
-S

pr
ea

de
r

[p
er

ce
nt

]

Influence factor ρ

Random
Max Degree

Exhaustive Update
VirAds

A Physics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
si

ze
 o

f d
-S

pr
ea

de
r

[p
er

ce
nt

]

Influence factor ρ

Random
Max Degree

Exhaustive Update
VirAds

B Facebook

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
si

ze
 o

f d
-S

pr
ea

de
r

[p
er

ce
nt

]

Influence factor ρ

Random
Max Degree

VirAds

C Orkut

Figure 6-9. Seeding size at different influence factors ρ (the maximum number of
propagation hops is d = 4).

Finally, we compare VirAds with its naive implementation, called Exhaustive Update,

in which after selecting a vertex into the seeding, the effectiveness of all the remaining

vertices are recalculated. With more accurate estimation on vertex effectiveness,

Exhaustive Search is expected to produce higher quality solutions than those of VirAds.

The seeding size with different number of propagation hop d when ρ = 0.3 are

shown in Fig. 6-6. To our surprise, VirAds even performs equal or better than Exhaustive

Update despite that it uses significantly less effort to update vertex effectiveness. VirAds

has smaller seeding in Physics than Exhaustive Update; both of them give similar results

for Faceboook; while Exhaustive Update cannot finish on Orkut after 48 hours and

was forced to terminate. Sparingly update the vertices’ effectiveness turns out to be

efficient enough since the influence propagation is locally bounded. In addition, the

seeds produced by VirAds are almost two times smaller than those of Random.

The gap between VirAds and Max Degree is narrowed when the number of

maximum hops increases. Hence, selecting nodes with high degrees as seeding is

a good long-term strategy, but might not be efficient for fast propagation when the

number of hops is limited. In Facebook and Orkut, when d = 1, Max Degree has 60% to

70% more vertices in the seeding than VirAds. In Physics, the gap between VirAds and

the Max Degree is less impressive. Nevertheless, VirAds consistently produces the best

solutions in all networks.

138

6.4.4 Scalability

The running time of all methods at different propagation hop d are presented in Fig

6-7. The time is measured in second and presented in the log scale. The running times

increase slightly together with the number of propagation rounds d, and are proportional

to the size of the network. The Exhaustive Update has the worst running time, taking

up to 15 minutes for Physics, 20 minutes for Facebook. For Orkut, the algorithm cannot

finish within 2 days, as mentioned. The three remaining algorithms VirAds, Max Degree,

and Random take less than one second for Physics, and less than 10 seconds for

Facebook. Even on the largest network Orkut with more than 220 million edges, VirAds

requires less than 12 minutes to complete.

6.4.5 Influence factor

We study the performance of VirAds and the other method at different influence

factor ρ. The number of propagation rounds d is fixed to 4. The size of d-seeding sets

are shown in Figures 6-9. VirAds is clearly still the best performer. The seeding sizes of

VirAds are up to 5 times smaller than those of Max Degree for small ρ (although it’s hard

to see this on the charts due to small seeding sizes).

Since all tested networks are social networks with small diameter, the seeding sizes

go to zero when ρ is close to zero. The exception is the Physics, in which the seeding

sizes do not go below 10% the number of vertices in the networks even when ρ = 0.05.

A closer look into the Physics network reveals that the network contain many isolated

cliques of small sizes (2, 3, 4, and so on) which correspond to authors that appear in

only one paper. In each clique, regardless of the threshold ρ, at least one vertex must be

selected, thus the seeding size cannot get below the number of isolated cliques in the

networks. To eliminate the effect of isolated cliques, a possible approach is to restrict the

problem to the largest component in the network.

139

CHAPTER 7
CONCLUSION

Society relies heavily on its networked physical infrastructure and information

systems. To detect vulnerability issues in a network, it is of particular importance to

analyze how well-connected the network will remain after a disruptive event takes

place. We propose the use of pairwise connectivity, the number of connected pairs

in the network, as a disruptive effect measurement, and use it to formulate network

vulnerability assessment as optimization problems. The objective is to identify the

minimum set of critical network elements (nodes or edges) whose removal results in a

major degradation of the network pairwise connectivity.

We prove that both critical edges detection (CED) and critical nodes detection

(CND) are NP-complete [33]; and develop two novel solutions with provable guarantees:

1) an O(log1.5 n) bicriteria approximation algorithm for CED based on constructing a

decomposition tree with recursive c-balanced cut and 2) an O(log n log log n) bicriteria

approximation algorithm for CND [31]. Later we design a bicriteria approximation

algorithm with performance guarantee O(
√
log n) when the set of critical elements may

include both edges and nodes. This immediately implies improved results for both

CED and CND. The extensive experiments have revealed many insights on the relative

criticality between edges and nodes in the networks on different network topologies.

dynamic networks, e.g. cellular networks, or mobile sensor networks, detecting

critical nodes is extremely challenging due to the continual changes in network topology.

We abstract dynamic networks as probabilistic graphs and measure the disruptive

effect in terms of expected pairwise connectivity (EPC). Computing EPC is tightly

related to network reliability problems, some of the most classical open #P-complete

problems. Beyond showing #P-completeness of EPC, we have approximated EPC

with an FPRAS, which gives a potential direction to tackle open questions in network

reliability. Further, we formulate the problem of detecting critical nodes as a two-level

140

stochastic programming and present a sample average approximation algorithm to solve

the formulation with guaranteed accuracy.

We investigate in Chapter 6 cascading failures in complex systems. Those failures

often propagate and lead to a much more devastating consequence. Thus, it is crucial

to detect critical nodes whose failures will trigger a cascading failure to an entire

network, leaving major nodes in the failure state within a given number of steps. My

theoretical analysis shows that the cascading of failures maybe quite different in power-

law networks than others. First, we prove that a large number of initial failures are

required to trigger a network-wide failure. Second, the problem of detecting critical

nodes cannot be approximated within a factor O(log n) in general graphs, however, there

is a constant factor approximation algorithm for the problem in power-law networks.

Extensive experiments on large-scale OSNs up to hundreds of millions of edges

demonstrate the effectiveness of my proposed algorithm. My study is also applied

naturally to the problems of information propagation, viral marketing, and disease

spreading.

141

REFERENCES

[1] “US IP Backbone network XO company.”
urlhttp://www.xo.com/about/network/Pages/overview.aspx, ????

[2] Agarwal, A., Charikar, M., Makarychev, K., and Makarychev, Y. “O(log n)
approximation algorithms for min UnCut, min 2CNF deletion, and directed cut
problems.” STOC. New York, NY, USA: ACM, 2005, 573–581.

[3] Aiello, W., Chung, F., and Lu, L. “A random graph model for massive graphs.” STOC
’00. New York, NY, USA: ACM, 2000.

[4] ———. “A Random Graph Model for Power Law Graphs.” Experimental Math 10
(2000): 53–66.

[5] Aiello, William, Chung, Fan, and Lu, Linyuan. “Random Evolution in Massive
Graphs.” In Handbook of Massive Data Sets. Kluwer Academic Publishers, 2001.

[6] Albert, R., Albert, I., and Nakarado, G. L. “Structural Vulnerability of the North
American Power Grid.” Phys. Rev. E 69 (2004).2: 10.

[7] Albert, R., Jeong, H., and Barabasi, A. “Error and attack tolerance of complex
networks.” Nature 406 (2000).6794: 378–382.

URL http://dx.doi.org/10.1038/35019019

[8] Arora, S. and Barak, B. Computational complexity: a modern approach. Cambridge
University Press, 2009.

URL http://books.google.com/books?id=nGvI7cOuOOQC

[9] Arora, S., Hazan, E., and Kale, S. “O(
√
log n) Approximation to SPARSEST CUT in

Õ(n2) Time.” SIAM J. Comput. 39 (2010).5.

[10] Arulselvan, A., Commander, Clayton W., Elefteriadou, L., and Pardalos, Panos M.
“Detecting critical nodes in sparse graphs.” Computers & Operations Research 36
(2009).7: 2193–2200.

[11] ———. “Detecting critical nodes in sparse graphs.” Computers and Operations
Research 36 (2009).7.

[12] Barabasi, A., Albert, R., and Jeong, H. “Scale-free characteristics of random
networks: the topology of the world-wide web.” Physica A 281 (2000).

[13] Barabasi, A, Jeong, H, Neda, Z, Ravasz, E, Schubert, A, and Vicsek, T. “Evolution
of the social network of scientific collaborations.” Physica A: Statistical Mechanics
and its Applications 311 (2002).3-4: 590–614.

URL http://linkinghub.elsevier.com/retrieve/pii/S0378437102007367

142

http://dx.doi.org/10.1038/35019019
http://books.google.com/books?id=nGvI7cOuOOQC
http://linkinghub.elsevier.com/retrieve/pii/S0378437102007367

[14] Bissias, G. D. Bounds on service quality for networks subject to augmentation and
attack. Ph.D. thesis, University of Massachusett Amherst, 2010.

[15] Bissias, George, Levine, Brian Neil, and Rosenberg, Arnold L. “Bounding Damage
From Link Destruction with Application to the Internet (extended abstract).” Proc.
ACM SIGMETRICS. 2007, 367—368.

URL http://prisms.cs.umass.edu/brian/pubs/bissias.sigmetrics.abstract.

2007.pdf

[16] Blackford, L. S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.
ScaLAPACK user’s guide. SIAM, 1997.

[17] Borgatti, Stephen P. “Identifying sets of key players in a social network.” Computa-
tional & Mathematical Organization Theory 12 (2006).1: 21–34.

[18] Borgatti, Stephen P. and Everett, Martin G. “A Graph-theoretic perspective on
centrality.” Social Networks 28 (2006).4: 466–484.

URL http://dx.doi.org/10.1016/j.socnet.2005.11.005

[19] Boyd, S.P. and Vandenberghe, L. Convex optimization. Cambridge University
Press, 2004.

[20] Cauchy, A.L.B. and polytechnique (France), École. Cours d’analyse de l’École
royale polytechnique. No. v. 1 in Cours d’analyse de l’École royale polytechnique.
Imprimerie royale, 1821.

URL http://books.google.com/books?id=n60AAAAAMAAJ

[21] Centola, Damon and Macy, Michael. “Complex Contagions and the Weakness of
Long Ties.” American Journal of Sociology 113 (2007).3: 702–734.

URL http://dx.doi.org/10.1086/521848

[22] Chen, N. “On the Approximability of Influence in Social Networks.” SIAM Journal of
Discrete Mathematics 23 (2009).3: 1400–1415.

[23] Chung, Fan R. K. Spectral Graph Theory (CBMS Regional Conference Series in
Mathematics, No. 92). American Mathematical Society, 1997.

[24] Church, R., Scaparra, M., and Middleton, R. “Identifying critical infrastructure:
the median and covering facility interdiction problems.” Ann Assoc Am Geogr 94
(2004).3.

[25] Clauset, A., Shalizi, C. R., and Newman, M. E. J. “Power-law distributions in
empirical data.” SIAM Reviews (2007).

143

http://prisms.cs.umass.edu/brian/pubs/bissias.sigmetrics.abstract.2007.pdf
http://prisms.cs.umass.edu/brian/pubs/bissias.sigmetrics.abstract.2007.pdf
http://dx.doi.org/10.1016/j.socnet.2005.11.005
http://books.google.com/books?id=n60AAAAAMAAJ
http://dx.doi.org/10.1086/521848

[26] Colbourn, Charles J. The Combinatorics of Network Reliability. New York, NY,
USA: Oxford University Press, Inc., 1987.

[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to
Algorithms. The MIT Press, 2009, 3rd edition ed.

[28] Dagum, P., Karp, R., Luby, M., and Ross, S. “An Optimal Algorithm for Monte Carlo
Estimation.” SIAM Journal on Computing 29 (2000).5: 1484–1496.

URL http://epubs.siam.org/doi/abs/10.1137/S0097539797315306

[29] Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. “A
supernodal approach to sparse partial pivoting.” SIAM J. Matrix Analysis and
Applications 20 (1999).3: 720–755.

[30] Dinh, T. N. and Thai, M. T. “Precise Structural Vulnerability Assessment Via
Mathematical Programming.” Proc. of IEEE MILCOM. 2011.

[31] ———. “Network under Joint Node and Link Attacks: Vulnerability Assessment
Methods and Analysis.” Tech. rep., Dept. of CISE, University of Florida, 2012.

[32] Dinh, T. N., X., Ying, Thai, M. T., Park, E.K., and Znati, T. “On Approximation of
New Optimization Methods for Assessing Network Vulnerability.” Proc. of IEEE
INFOCOM. 2010.

[33] Dinh, Thang N., Xuan, Ying, Thai, My T., Park, E. K., and Znati, Taieb. “On
approximation of new optimization methods for assessing network vulnerability.”
INFOCOM. Piscataway, NJ, USA: IEEE Press, 2010, 2678–2686.

[34] Dinur, I. and Safra, S. “On the Hardness of Approximating Minimum Vertex Cover.”
Annals of Mathematics 162 (2004): 2005.

[35] Donath, W. E. and Hoffman, A. J. “Lower bounds for the partitioning of graphs.” IBM
J. Res. Dev. 17 (1973).

[36] Erdos, P. and Renyi, A. “On the evolution of random graphs.” Publ. Math. Inst.
Hungary. Acad. Sci. 5 (1960): 17–61.

[37] Even, G., Naor, J. S., Rao, S., and Schieber, B. “Divide-and-conquer approximation
algorithms via spreading metrics.” J. of ACM 47 (2000).4: 585–616.

[38] Feige, U. “A threshold of ln n for approximating set cover.” Journal of ACM 45
(1998).4: 634–652.

[39] Ferrante, Alessandro. “Hardness and Approximation Algorithms of Some Graph
Problems.” 2006.

[40] Garey, Michael R. and Johnson, David S. Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

144

http://epubs.siam.org/doi/abs/10.1137/S0097539797315306

[41] Gkantsidis, C., Mihail, M., and Saberi, A. “Conductance and congestion in power
law graphs.” SIGMETRICS ’03: Proceedings of the International Conference on
Measurements and Modeling of Computer Systems. New York, NY, USA: ACM,
2003, 148–159.

[42] Goldberg, A V and Tarjan, R E. “A new approach to the maximum flow problem.”
Proceedings of the eighteenth annual ACM symposium on Theory of computing.
STOC ’86. New York, NY, USA: ACM, 1986, 136–146.

URL http://doi.acm.org/10.1145/12130.12144

[43] Goyal, A., Bonchi, F., and Lakshmanan, L. V. S. “Learning influence probabilities in
social networks.” WSDM ’10 (2010): 241–250.

URL http://portal.acm.org/citation.cfm?id=1718518

[44] Goyal, D. and Caffery, J. “Partitioning avoidance in mobile Ad Hoc networks using
network survivability concepts.” ISCC (2002): 553.

[45] Grtschel, M. and Wakabayashi, Y. “A cutting plane algorithm for a clustering
problem.” Mathematical Programming 45 (1989). 10.1007/BF01589097.

[46] Grubesic, Tony H., Matisziw, Timothy C., Murray, Alan T., and Snediker, Diane.
“Comparative Approaches for Assessing Network Vulnerability.” Inter. Regional Sci.
Review 31 (2008).

URL http://dx.doi.org/10.1177/0160017607308679

[47] Hauspie, M., Carle, J., and Simplot, D. “Partition detection in mobile Ad Hoc
networks using multiple disjoint paths set.” Workshop of Objects, Models and
Multimedia technology (2003).

[48] Jorgic, M., Stojmenovic, I., Hauspie, M., and Simplot-Ryl, D. “Localized algorithms
for detection of critical nodes and links for connectivity in ad hoc networks.” 3rd IFIP
MED-HOC-NET Workshop (2004).

[49] Kempe, D., Kleinberg, J., and Tardos, É. “Maximizing the spread of influence
through a social network.” KDD’03: Proceedings of the 9th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM New York, NY,
USA, 2003, 137–146.

[50] Kempe, D., Kleinberg, J., and Tardos, E. “Influential nodes in a diffusion model
for social networks.” International Colloquium on Automata, Languages and
Programming ’05. 2005, 1127–1138.

[51] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by Simulated
Annealing.” Science 220 (1983).4598: 671–680.

145

http://doi.acm.org/10.1145/12130.12144
http://portal.acm.org/citation.cfm?id=1718518
http://dx.doi.org/10.1177/0160017607308679

[52] Kleywegt, A., Shapiro, A., and Homem-de Mello, T. “The Sample Average
Approximation Method for Stochastic Discrete Optimization.” SIAM Journal on
Optimization 12 (2002).2: 479–502.

[53] Lehman, T., Sobieski, J., and Jabbari, B. “DRAGON: a framework for service
provisioning in heterogeneous grid networks.” IEEE Communication Magazines
(2006).

[54] Lehoucq, R. B., Sorensen, D. C., and Yang, C. “ARPACK Users Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods.” 1997.

[55] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glance,
N. “Cost-effective outbreak detection in networks.” ACM SIGKDD Conference
on Knowledge Discovery and Data Mining ’07. New York, NY, USA: ACM, 2007,
420–429.

[56] Leskovec, Jure, Kleinberg, Jon, and Faloutsos, Christos. “Graphs over time:
densification laws, shrinking diameters and possible explanations.” KDD. ACM,
2005, 177–187.

[57] Meila, M. and Pentney, W. “Clustering by Weighted Cuts in Directed Graphs.”
Proceedings of the SIAM Conference on Data Mining. 2007.

[58] Mhatre, V. and Rosenberg, C. “Homogeneous vs heterogeneous clustered sensor
networks: a comparative study.” IEEE ICC (2004).

[59] Mislove, A., Marcon, M., Gummadi, Krishna P., Druschel, P., and Bhattacharjee, B.
“Measurement and Analysis of Online Social Networks.” IMC’07. San Diego, CA,
2007.

[60] Mladenovic, N. and Hansen, P. “Variable neighborhood search.” Computers &
Operations Research 24 (1997).11: 1097 – 1100.

[61] Mohar and Poljak. “Eigenvalue in combinatorial optimization.” Combinatorial and
Graph-Theoretical Problems in Linear Algebra (1992).

[62] Murray, A., Matisziw, T., and Grubesic, T. “Multimethodological approaches to
network vulnerability analysis.” Growth Change (2008).

[63] Neumayer, S., Zussman, G., Cohen, R., and Modiano, E. “Assessing the
Vulnerability of the Fiber Infrastructure to Disasters.” Proc. of IEEE INFOCOM.
2009.

[64] Neumayer, Sebastian, Zussman, Gil, Cohen, Reuven, and Modiano, Eytan.
“Assessing the Vulnerability of the Fiber Infrastructure to Disasters.” IEEE/ACM
Trans. Netw. (2011): 1610–1623.

[65] Page, L., Brin, S., Motwani, R., and Winograd, T. “The PageRank Citation Ranking:
Bringing Order to the Web.” Tech. rep., Stanford InfoLab, 1999.

146

[66] Peleg, D. “Local Majority Voting, Small Coalitions and Controlling Monopolies
in Graphs: A Review.” SIROCCO’96: Colloquium on Structural Information and
Communication Complexity. 1996, 152–169.

[67] Pinar, A., Meza, J., Donde, V., and Lesieutre, B. “Optimization Strategies for the
Vulnerability Analysis of the Electric Power Grid.” SIAM J. on Optimization 20
(2010).

[68] Sen, A., Murthy, S., and Banerjee, S. “Region-based connectivity - a new paradigm
for design of fault-tolerant networks.” HPSR. 2009.

[69] Shapiro, A., Dentcheva, D., and Ruszczyński, A.P. Lectures on Stochastic Pro-
gramming: Modeling and Theory. MPS-SIAM Series on Optimization Series.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 2009.

[70] Sinclair, A. and Jerrum, M. “Approximate counting, uniform generation and rapidly
mixing Markov chains.” Inf. Comput. 82 (1989).1: 93–133.

URL http://dx.doi.org/10.1016/0890-5401(89)90067-9

[71] Stoer, M. and Wagner, F. “A simple min-cut algorithm.” J. of ACM 44 (1997).4:
585–591.

[72] Suh, Y. J., Kim, D. J., Lim, W. S., and Baek, J. Y. “Method for supporting quality of
service in heterogeneous networks.” 2009.

[73] Sun, Fangting and Shayman, Mark A. “On pairwise connectivity of wireless
multihop networks.” International Journal of Security and Networks 2 (2007).1/2:
37–49.

[74] Trevisan, L. “Non-approximability results for optimization problems on bounded
degree instances.” ACM Symposium on Theory of Computing ’01. New York, NY,
USA: ACM, 2001, 453–461.

[75] Valiant, L. “The Complexity of Enumeration and Reliability Problems.” SIAM Journal
on Computing 8 (1979).3: 410–421.

URL http://epubs.siam.org/doi/abs/10.1137/0208032

[76] Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. “On the Evolution of User
Interaction in Facebook.” WOSN’09. 2009.

[77] Wagner, D. and Wagner, F. “Between Min Cut and Graph Bisection.” MFCS.
London, UK: Springer-Verlag, 1993, 744–750.

147

http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://epubs.siam.org/doi/abs/10.1137/0208032

[78] Wang, F., Camacho, E., and Xu, K. “Positive Influence Dominating Set in Online
Social Networks.” Proceedings of the 3rd International Conference on Combinatori-
al Optimization and Applications. COCOA ’09. Berlin, Heidelberg: Springer-Verlag,
2009, 313–321.

URL http://dx.doi.org/10.1007/978-3-642-02026-1_29

[79] Watts, D. J. and Strogatz, S. H. “Collective dynamics of ’small-world’ networks.”
Nature 393 (1998).6684: 440–442.

URL http://dx.doi.org/10.1038/30918

[80] White, S. and Smyth, P. “A Spectral Clustering Approach To Finding Communities
in Graph.” SDM. 2005.

[81] Woo, Gordon. “Intelligence Constraints on Terrorist Network Plots.” Mathematical
Methods in Counterterrorism. eds. Nasrullah Memon, Jonathan David Farley,
David L. Hicks, and Torben Rosenorn. Springer Vienna, 2009. 205–214.

URL http://dx.doi.org/10.1007/978-3-211-09442-6_12

[82] Z., Feng, Z., Zhao, and W., Weili. “Latency-Bounded Minimum Influential Node
Selection in Social Networks.” Wireless Algorithms, Systems, and Applications.
eds. Benyuan Liu, Azer Bestavros, Ding-Zhu Du, and Jie Wang, Lecture Notes in
Computer Science. 2009, 519–526.

URL http://dx.doi.org/10.1007/978-3-642-03417-6_51

[83] Zhu, X., Yu, J., Lee, W., Kim, D., Shan, S., and Du, D.-Z. “New dominating
sets in social networks.” Journal of Global Optimization 48 (2010): 633–642.
10.1007/s10898-009-9511-2.

URL http://dx.doi.org/10.1007/s10898-009-9511-2

148

http://dx.doi.org/10.1007/978-3-642-02026-1_29
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1007/978-3-211-09442-6_12
http://dx.doi.org/10.1007/978-3-642-03417-6_51
http://dx.doi.org/10.1007/s10898-009-9511-2

BIOGRAPHICAL SKETCH

Thang N. Dinh received the BA degree in Information Technology from Vietnam

National University, Hanoi, Vietnam in 2007. His research focuses on designing

combinatorial optimization methods for dynamic complex networks and mobile

adhoc network including network vulnerability, dynamic community structure, and

fast information propagation.

149

THE EXPLOITATION OF POWER-LAW NETWORKS: ROBUSTNESS, OPTIMIZATION
AND ITS IMPACT ON COMMUNICATION NETWORKS AND SOCIAL BEHAVIORS

By

YILIN SHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

c⃝ 2013 Yilin Shen

2

I dedicate this to my parents and my girlfriend.

3

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my committee chair Dr. Thai for her

priceless help for my Ph.D. program. Not only the chance that she offered me to further

my study and research on Computer Networking for my Ph.D. degree, but also her

precious guidance over my 4-year Ph.D. study and research, are indispensable to

this thesis. Her strong passion, preciseness and profound knowledge for research

have been enlightening me throughout my Ph.D. period. The financial support from

her evades me from the financial problems for international students and so that I can

concentrate over the researches.

I would also like to thank all the professors, Prof. Sartaj Sahni, Prof. Sanjay Ranka,

Prof. Prabhat Mishra and Prof. Panos M. Pardalos, in my committee for their time for

discussing over my research topics and providing numerous constructive opinions.

I would like to thank my group members, Ying Xuan, Thang N. Dinh, Nam P.

Nguyen, Dzung T. Nguyen, Ravi Tiwari, Incheol Shin, Huiyuan Zhang for their help in my

study and work.

My research was partially funded by DTRA, Young Investigator Award, Basic

Research Program # HDTRA1-09-1-0061 and DTRA # HDTRA1-08-10.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 14

1.1 Power-Law Graphs . 14
1.1.1 Formal Definition . 14
1.1.2 Random Power-Law Graph Model 14

1.2 Optimization Problems in Power-Law Graphs 15
1.3 Vulnerability Assessment of Power-Law Networks 17
1.4 Optimization of Power-Law Networks . 18
1.5 Outline of Dissertation . 18

2 HARDNESS AND APPROXIMATION ALGORITHMS 20

2.1 Preliminaries . 20
2.1.1 Problem Definitions . 21
2.1.2 Some Notations . 22
2.1.3 Special Graphs . 22
2.1.4 Existing Inapproximability Results 23

2.2 Inapproximability Optimal Substructure Framework in Power-Law Graphs 24
2.3 Hardness and Inapproximability of Optimal Substructure Problems 25

2.3.1 General Cycle-Based Embedding Technique 25
2.3.2 APX-Hardness . 27
2.3.3 Inapproximability Factors . 29

2.4 More Inapproximability Results on Simple Power-Law Graphs 34
2.4.1 General Graphic Embedding Technique 34
2.4.2 Inapproximability of MIS, MVC and MDS 36
2.4.3 Maximum Clique, Minimum Coloring 38

2.5 Relationship between β and Approximation Hardness 39
2.6 Minor NP-Hardness on Simple Power-Law Graphs for β < 1 40
2.7 Approximation Algorithms . 42

2.7.1 Low-Degree Percolation (LDP) Algorithm Framework 43
2.7.2 Approximation Ratio Analysis . 44

2.7.2.1 Theoretical framework . 44
2.7.2.2 Power-law random graph 48

2.8 Related Works . 51

5

3 VULNERABILITY ASSESSMENT . 53

3.1 Metric . 53
3.2 Threat Taxonomy and Notations . 55

3.2.1 Threat Taxonomy . 55
3.2.2 Notation Explanation . 56

3.3 Preliminaries . 56
3.3.1 Previous Works . 56
3.3.2 Robustness of Intact Power-law Networks 57

3.4 Random Failures . 58
3.4.1 Robustness under Random Failures 58
3.4.2 Good Range of β under Random Failures 62

3.5 Preferential Attacks . 63
3.5.1 Interactive Preferential Attacks

(
pi = 1− 1

iβ
′

)
. 63

3.5.2 Expected Preferential Attacks
(
pi = c

i
eαζ(β−1)

)
. 65

3.5.3 Relations between β and Expected Attacked Nodes 66
3.6 Degree-Centrality Attacks . 67

3.6.1 Robustness under Degree-Centrality Attacks 68
3.6.2 Relations between β and Attacked Nodes 69

3.7 Random Cascading Failures . 70
3.7.1 Cascading Failure Model . 70
3.7.2 Cascading Random Failures . 72
3.7.3 Numerical Analysis . 77

3.8 Related Works . 78

4 OPTIMIZATION OF POWER-LAW NETWORKS 80

4.1 Design Optimization of Power-law Networks 80
4.1.1 Communication Networks . 81
4.1.2 Social Networks . 83
4.1.3 Optimal Range of Exponential Factor β 84

4.2 Critical Elements Detection in Power-law Networks 86
4.2.1 Hardness of Detecting Critical Links and Nodes 86
4.2.2 HILPR Approach . 89

4.2.2.1 Integer linear programming formulation 90
4.2.2.2 Hybrid iterative lp rounding algorithm 91
4.2.2.3 Performance evaluation 94

4.2.3 TRGA Approach under Cascading Failures 100
4.2.3.1 TRGA: an iterative 2-phase algorithm 100
4.2.3.2 Optimality of CCND problem 102
4.2.3.3 Experimental evaluation 103

4.3 Related Works . 106

5 CONCLUSION . 109

6

REFERENCES . 111

BIOGRAPHICAL SKETCH . 119

7

LIST OF TABLES

Table page

2-1 Inapproximability Factors on Power-Law Graphs with Exponential Factor β > 1 20

8

LIST OF FIGURES

Figure page

2-1 Special Graph Examples: The left one is a (3, 3, 3, 3, 3, 3, 3, 3)-regular cycle
and the right one is a (3, 3, 3, 3)-branch-(2, 2, 2, 2, 2, 2)-cycle. The grey vertices
consist of the optimal solution of MDS on these two special graphs. 23

2-2 The Reduction from MVC to ρ-MDS . 32

2-3 Numerical results of our LDP algorithms on different β (α = 5): (1) Theoretical
results shows the approximation ratios with probability at least 1 − o(1). As
one can see, our LDP algorithms can obtain the optimal solution for all these
problems after β gets larger than 1.6 and 1.7 in ERPL and SRPL respectively,
which covers the range of β in most real-world networks [18]. For the other
smaller exponential factors β, we can see that the approximation ratios are a
little bit higher, especially up to 5 for MDS and MIS problems for SRPL model.
However, the probabilities that these two problems can obtain the approximation
ratios less than 1.5 using LDP algorithms are at least 0.95 (only a little bit lower
than 1−o(1)). (2) Experimental results further reveals that our LDP algorithms
can achieve even better solutions than theoretical bounds. (We tests on 100
cases and choose the average.) As illustrated in Fig. 2-3, the approximation
ratios of all MDS,MVC,MIS problems is no larger than 1.2 and 2.5 even when
β = 1.3 in ERPL and SRPL models respectively. 51

3-1 An Example of Internet: the removal of v8 and v10 (grey nodes) is sufficient to
destroy the function of the whole network such that only less than 40% nodes
connect each other. 54

3-2 Relation between Threshold βp and Failure Probability p 62

3-3 Relation between β and Attacked Nodes under Iterative Preferential Attacks . 67

3-4 Relation between β and Attacked Nodes under Expected Preferential Attacks 67

3-5 Relation between β and Attacked Nodes under Degree-Centrality Attacks . . . 69

3-6 Each node in this power grid has load equal to its degree, capacity equal to
twice its degree and each red arrow says the shifting of 2 unit load. The solid
red arrows stand for the direct failure caused by the cascades and the dotted
ones mean the load shifting to the neighbor which is not failed directly. The
overload and failure of v8 and v10 can only cause the disconnection from generators
and transmitters, yet the power can be still supplied to customers from demand
centers. However, when failure cascades, it leads to the breakdown of all transmitters
and the electricity to customers are affected instantly. 71

9

3-7 Numerical Analysis in Power-Law Networks (β = 1.5, n = 250). We plot the
three cascading hops and find that our analysis (pink plots) approximates the
simulation of the total pairwise connectivity (PWC) after cascading failures
surprisingly well, in both cases that power-law networks are a.s. unaffected
(PWC∝ n2) and a.s. fragmented. 78

4-1 Optimal Robust Communication Networks . 85

4-2 Optimal Robust Social Networks . 85

4-3 An example of CND reduction on PLGs. For simplicity, we just draw the nodes
in G and its newly added nodes and links. 89

4-4 Triangle inequality constraints . 93

4-5 The performance of HILPR using different γ in terrorist network 95

4-6 The performance evaluation of HILPR against the degree and betweenness
centrality algorithms for the CLD problem . 96

4-7 The performance evaluation of HILPR against the degree and betweenness
centrality, and CNLS algorithms for the CND problem 96

4-8 Overlapping critical nodes between optimal solution and HILPR in terrorist
network . 97

4-9 The comparison of different metrics on terrorist network 99

4-10 The performance evaluation of TRGA against degree and betweenness centrality
algorithms for the CCND problem . 105

10

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE EXPLOITATION OF POWER-LAW NETWORKS: ROBUSTNESS, OPTIMIZATION
AND ITS IMPACT ON COMMUNICATION NETWORKS AND SOCIAL BEHAVIORS

By

Yilin Shen

May 2013

Chair: My T. Thai
Major: Computer Engineering

Many practical complex networks, such as the Internet, WWW and social networks,

are discovered to follow power-law distribution in their degree sequences, i.e., the

number of nodes with degree i in these networks is proportional to i−β for some

exponential factor β > 1. The exploitation of such networks becomes an urgent

need, yet remains open especially from theoretical viewpoints.

In this dissertation, we first investigate if it is easier to solve many optimization

problems in power-law networks. Our works focus on the hardness and inapproximability

of optimization problems on power-law graphs (PLG). Particularly, we show that the

MINIMUM DOMINATING SET, MINIMUM VERTEX COVER and MAXIMUM INDEPENDENT

SET are still APX-hard on power-law graphs. We further show the inapproximability

factors of these optimization problems and a more general problem (ρ-MINIMUM

DOMINATING SET), which proved that a belief of (1 + o(1))-approximation algorithm

for these problems on power-law graphs is not always true. In order to show the

above theoretical results, we propose a general cycle-based embedding technique

to embed any d-bounded graphs into a power-law graph. In addition, we present a

brief description of the relationship between the exponential factor β and constant

greedy approximation algorithms. Moreover, we propose a algorithm framework, called

Low-Degree Percolation (LDP) Algorithm Framework, for solving Minimum Dominating

Set, Minimum Vertex Cover and Maximum Independent Set problems in power-law

11

graphs. Using this framework, we further show a theoretical framework to derive

the approximation ratios for these optimization problems in two well-known random

power-law graphs. Numerical analysis shows that our proposed framework can not only

lead to a good theoretical approximation ratio but also result in even better performance

than theoretical bounds.

In addition, the robustness of power-law networks attracts more research attentions

since they are exposed to a great number of threats such as adversarial attacks on the

Internet, cybercrimes on the WWW or malware propagations on social networks. In this

dissertation, we first show it NP-hard to detect critical links and nodes even in power-law

networks. Due to the denial of promptly assessing vulnerability of power-law networks

in this manner, we are more interested in the vulnerability of power-law networks under

random attacks and adversarial attacks using the in-depth probabilistic analysis on the

theory of random power-law graph models. Our results indicate that power-law networks

are able to tolerate random failures if their exponential factor β is less than 2.9, and they

are more robust against intentional attacks if β is smaller. In the present of cascading

failure, we show that power-law networks are very vulnerable when cascading failure

occurs since any random failures of high degree nodes can easily overload the low

degree nodes.

At last, we study the optimization of power-law networks, from design and protection

perspectives. On the one hand, we reveal the best range [1.8, 2.5] for the exponential

factor β by optimizing the complex networks in terms of both their vulnerabilities and

costs. When β < 1.8, the network maintenance cost is very expensive, and when

β > 2.5 the network robustness is unpredictable since it depends on the specific

attacking strategy. On the other hand, we study Critical Link Disruptor (CLD) and

Critical Node Disruptor (CND) optimization problems to identify critical links and

nodes in a network whose removals maximally destroy the network’s functions. After

showing the NP-hardness of these two problems, we propose HILPR, a novel LP-based

12

rounding algorithm, for efficiently solving CLD and CND problems in a timely manner.

In the case of cascading failures, we further develop the TRPA algorithm, an iterative

2-phase algorithm, for solving Cascading Critical Node Disruptor (CCND) problem. The

effectiveness of our solutions is validated on various synthetic and real-world networks.

13

CHAPTER 1
INTRODUCTION

One of the most remarkable discoveries in many real-world networks is the

power-law distribution in their degree sequences, ranging from the Internet [34], WWW

[4], biological networks [12] to social networks [74]. In particular, the number of nodes

with degree i in these complex networks is observed to be proportional to i−β for some

exponential factor β > 1.

1.1 Power-Law Graphs

1.1.1 Formal Definition

We consider the following graph, (α, β) graph G(α,β), with its power-law degree

distribution depending on two given values α and β.

Definition 1 ((α, β) Graph G(α,β)). Given an undirected graph G = (V ,E) having |V | = n

nodes and |E | = m edges, it is called a (α, β) power-law graph if its maximum degree is

∆ =
⌊
eα/β

⌋
and the number of nodes with degree i is

yi =

 ⌊
eα

iβ
⌋, if i > 1 or

∑∆
i=1 ⌊

eα

iβ
⌋ is even

⌊eα⌋+ 1, otherwise
(1–1)

Note that the number of nodes n = eαζ(β) + O(n
1
β − 1) and the number of edges

m = 1
2
eαζ(β − 1) + O(n

2
β − 1), where ζ(β) =

∑∞
i=1

1
iβ

is the Riemann Zeta function.

For simplicity, since there is only a very small error o(1) when β > 2 when counting

the number of both nodes and edges, we denote them as n .= eαζ(β) and edges

m
.
= 1
2
eαζ(β − 1).

1.1.2 Random Power-Law Graph Model

There are two main categories of random graph models to generate graphs

with skewed degree sequences, evolutionary and structural. Evolutionary models

lead to the skewed degree distributions by identifying growth primitives, including

multi-objective optimization [6, 33] and statistical preferential attachment [11, 24, 58, 65].

Despite its advantage to explore additional network semantics, the tight dependencies

14

between iterations in evolutionary models bring the biggest obstacle in the probabilistic

analysis [15, 33]. Structural models, on the other hand, start with a given skewed

degree distribution (e.g., a power-law distribution based on the degree sequences of

a real-world network [18]) and generate a graph with the degree sequence, satisfying

certain randomness properties [2, 37, 82]. The greatest advantage of such structural

models is their tractability to theoretical analysis, due to its discard of dependencies in

evolutionary models by taking skewed degree sequences [2, 21, 66]. Although the term

configuration is used, a lot of mathematicians also noted this advantage by exploiting

several properties in structural random graph models [14, 68, 69].

Therefore, in this dissertation, we use the well-accepted structural PLRG model in

[2] in order to explore the power-law networks from an in-depth theoretical perspective.

Given the parameters α and β, the PLRG model is proposed as an structural approach

to construct a (α, β) power-law graph according to its degree sequence d⃗ , which

consists of a sequence of integers (1, ... , 1, 2, ... , 2, ... , ∆) where the number of i is equal

to yi defined in the above Definition 1.

Definition 2 (Power-Law Random Graph (PLRG) Model). Given d⃗ = (d1, d2, ... , dn)

be a sequence of integers (1, ... , 1, 2, ... , 2, ... , ∆) where the number of i is equal to

yi , the PLRG model generates a random graph as follows. Consider D =
∑n
i=1 di

mini-nodes lying in n clusters of each size di where 1 ≤ i ≤ n, we construct a random

perfect matching among the mini-nodes and generate a graph on the n original nodes as

suggested by this perfect matching in the natural way: two original nodes are connected

by an edge if and only if at least one edge in the random perfect matching connects the

mini-nodes of their corresponding clusters.

1.2 Optimization Problems in Power-Law Graphs

A great number of large-scale networks in real life are discovered to follow a

power-law distribution in their degree sequences, ranging from the Internet [34], the

World-Wide Web (WWW) [4] to social networks [74]. That is, the number of vertices

15

with degree i is proportional to i−β for some constant β in these graphs, which is called

power-law graphs. The observations show that the exponential factor β ranges between

1 and 4 for most real-world networks [18]. Intuitively, the following theoretical question is

raised: What are the differences in terms of complexity hardness and inapproximability

factor of several optimization problems between in general graphs and in power-law

graphs?

Many experimental results on random power-law graphs give us a belief that

the problems might be much easier to solve on power-law graphs. Eubank et al. [32]

showed that a simple greedy algorithm leads to a 1 + o(1) approximation factor on

MINIMUM DOMINATING SET (MDS) and MINIMUM VERTEX COVER (MVC) on power-law

graphs (without any formal proof) although MDS and MVC has been proved NP-hard

to be approximated within (1 − ϵ) log n and 1.366 on general graphs respectively

[28]. In [73], Gopal also claimed that there exists a polynomial time algorithm that

guarantees a 1 + o(1) approximation of the MVC problem with probability at least

1 − o(1). Unfortunately, there is no such formal proof for this claim either. Furthermore,

several papers also have some theoretical guarantees for some problems on power-law

graphs. Gkantsidis et al. [36] proved the flow through each link is at most O(n log2 n)

on power-law random graphs where the routing of O(dudv) units of flow between each

pair of vertices u and v with degrees du and dv . In [36], the authors take advantage

of the property of power-law distribution by using the structural random model [2] and

show the theoretical upper bound with high probability 1 − o(1) and the corresponding

experimental results. Likewise, Janson et al. [48] gave an algorithm that approximated

MAXIMUM CLIQUE within 1 − o(1) on power-law graphs with high probability on the

random poisson model G(n,α) (i.e. the number of vertices with degree at least

i decreases roughly as n−i). Although these results were based on experiments

and various random models, they raise an interest in investigating hardness and

inapproximability of optimization problems on power-law graphs.

16

Recently, Ferrante et al. [35] had an initial attempt on power-law graphs to show

the NP-hardness of MAXIMUM CLIQUE (CLIQUE) and MINIMUM GRAPH COLORING

(COLORING) (β > 1) by constructing a bipartite graph to embed a general graph into

a power-law graph and NP-hardness of MVC, MDS and MAXIMUM INDEPENDENT SET

(MIS) (β > 0) based on their optimal substructure properties.

1.3 Vulnerability Assessment of Power-Law Networks

Most studies investigating this power-law property have been focused on how

such degree heterogeneity nature can impact the robustness of networks [3, 5, 43], or

how one can quickly and efficiently generate an ideal power-law network with a given

degree sequence [2, 14]. Focusing on the security factor, the works [5, 23, 43, 72] have

empirically shown that power-law networks appear robust under random attacks and

vulnerable to intentional attacks via experimental observations. Nevertheless, there are

several important security aspects of this property that are left untouched. For instance,

are power-law networks surely more vulnerable to intentional attacks than random

failures? How can we accurately assess the robustness of power-law networks under

various kinds of threat, e.g., random failure and adversarial attack? Can we design more

stable and robust power-law networks by adjusting the parameter β?

Another limitation of these prior works is their heavy dependence on the experiments

and failures to optimize the power-law networks. In other words, we cannot apply them

to enhance the robustness of power-law networks, and in the meanwhile reduce their

costs. To our best knowledge, this work is the first attempt from a theoretical point

of view targeting in the two objectives mentioned above: (1) assessing the impact

of random and intentional attacks on power-law networks; (2) optimizing power-law

networks based on their toleration on threats and maintenance costs, which are used to

guarantee the network functionality and reliability.

17

1.4 Optimization of Power-Law Networks

Although power-law networks are more robust when β is smaller, a majority of

real-world networks usually have their exponential factor β ranging from 2 to 2.5 rather

than some small β approaching 1 or even less. The questions are intuitively raised: Is

it better if real-world networks are denser such that they can be more robust? What

causes them to be sparser than our expectation? Does there exist some potential

optimization factors?

On the other hand, in order to optimally maintain the power-law networks, it is of

great importance to assess the network vulnerability, that is, to study how much the

network performance reduces in various cases of undesired disruptions, such as natural

disasters, unexpected elements failures, or especially adversarial attacks. In a typical

attacking point of view, an attacker would first exploit the network weaknesses, and then

only needs to target on some critical links or nodes whose corruptions bring the whole

network down to its knees. For instance, an adversarial attack to any essential Internet

providers, e.g., tier-1 ISPs such as Qwest, AT&T or Sprint servers, once successful, may

cause tremendous breakdowns to millions of companies’ websites and online services.

In a natural disaster, an unexpected earthquake may destroy some important power

lines, and consequently lead to a large-area blackout. Therefore, it is crucial to explore

the network vulnerability, i.e., identify those crucial links and nodes, beforehand.

1.5 Outline of Dissertation

The rest of dissertation, focusing on addressing the above three topics, is organized

as follows: Chapter 2 presents the hardness and inapproximability results of classic

optimization problem in power-law networks, in which we propose two novel techniques

to embed a d-bounded graph into general power-law graphs and simple power-law

graphs respectively. In addition, we design a Low-Degree Percolation (LDP) Algorithm

Framework for these optimization problems, and further provide a theoretical framework

to analyze approximation ratios in power-law graphs. In Chapter 3, we explore the

18

vulnerability of power-law networks via in-depth probabilistic analysis, under random

failures, intentional attacks, and random cascading failures. Chapter 4 investigates

the optimization of power-law networks. From a design perspective, we show that, in

both communication and social context, the power-law networks with exponential factor

between 1.8 and 2.5 results in the optimal design. Furthermore, in order to better protect

the power-law networks, we study CLD, CND and CCND problems to detect critical

elements. After showing the NP-hardness of these problems, we develop HILPR and

TRGA algorithms to solve them in a timely manner. The whole dissertation is concluded

in Chapter 5.

19

CHAPTER 2
HARDNESS AND APPROXIMATION ALGORITHMS

In this chapter, we develop two new techniques on optimal substructure problems,

Cycle-Based Embedding Technique and Graphic Embedding Technique, to embed

a d-bounded graph into a general power-law graph and a simple power-law graph

respectively. Then we use these two techniques to further prove the APX-hardness and

the inapproximability of MIS, MDS, and MVC on general power-law graphs and simple

power-law graphs. These inapproximability results on power-law graphs are shown in

Table 2-1. Furthermore, the inapproximability results in CLIQUE and COLORING are

shown by taking advantage of the reduction in [35]. We also analyze the relationship

between β and constant greedy approximation algorithms for MIS and MDS.

In addition, due to a lot of recent studies in online social networks on the influence

propagation problem [54, 55], we formulate this problem as ρ-Minimum Dominating Set

(ρ-MDS) and show it hard to be approximated within 2 − (2 + od(1)) log log d/ log d

factor on d-bounded graphs under unique games conjecture, which further leads to the

following inapproximability result on power-law graphs (shown in Table 2-1).

Table 2-1. Inapproximability Factors on Power-Law Graphs with Exponential Factor
β > 1

Problem General Power-Law Graph Simple Power-Law Graph
MIS 1 + 1

140(2ζ(β)3β−1) − ε 1 + 1
1120ζ(β)3β

− ε
MDS 1 + 1

390(2ζ(β)3β−1) 1 + 1
3120ζ(β)3β

MVC, ρ-MDS 1 +
2(1−(2+oc(1)) log log clog c)(
ζ(β)cβ+c

1
β

)
(c+1)

1 +
2−(2+oc(1)) log log clog c

2ζ(β)cβ(c+1)

CLIQUE - O
(
n1/(β+1)−ϵ

)
COLORING - O

(
n1/(β+1)−ϵ

)
a Conditions: MIS and MDS: P ̸=NP; MVC, ρ-MDS: unique games conjecture; CLIQUE, COLORING: NP̸=ZPP.
b c is a constant which is the smallest d satisfying the condition in [10].

2.1 Preliminaries

In this section, we first recall the definition of several classical optimization problems

and formulate the new optimization problem ρ-Minimum Dominating Set. Then the

20

power-law model and some corresponding concepts are proposed. At last, we introduce

some special graphs which will be used in the analysis throughout the whole paper.

2.1.1 Problem Definitions

Definition 3 (MAXIMUM INDEPENDENT SET). Given an undirected graph G = (V ,E),

find a subset S ⊆ V with the maximum size such that no two vertices in S are adjacent.

Definition 4 (MINIMUM VERTEX COVER). Given an undirected graph G = (V ,E), find

a subset S ⊆ V with the minimum size such that for each edge E at least one endpoint

belongs to S .

Definition 5 (MINIMUM DOMINATING SET). Given an undirected graph G = (V ,E), find

a subset S ⊆ V with the minimum size such that for each vertex vi ∈ V \ S , at least one

neighbor of vi belongs to S .

Definition 6 (MAXIMUM CLIQUE). Given an undirected graph G = (V ,E), find a

clique with maximum size where a subgraph of G is called a clique if all its vertices are

pairwise adjacent.

Definition 7 (MINIMUM GRAPH COLORING). Given an undirected graph G = (V ,E),

label the vertices in V with minimum number of colors such that no two adjacent vertices

share the same color.

The ρ-Minimum Dominating Set is defined as general version of MDS problem.

In the context of influence propagation, the ρ-MDS problem aims to find a subset of

nodes with minimum size such that all nodes in the whole network can be influenced

within t rounds. In particular, a node is influenced when ρ fraction of its neighbors are

influenced. For simplicity, we define ρ-MDS problem in the case that t = 1.

Definition 8 (ρ-MINIMUM DOMINATING SET). Given an undirected graph G = (V ,E),

find a subset S ⊆ V with the minimum size such that for each vertex vi ∈ V \ S ,

|S ∩ N(vi)| ≥ ρ|N(vi)|.

21

2.1.2 Some Notations

A great number of models [2, 2, 11, 13, 71] on power-law graphs are emerging in

the past recent years. In this chapter, we do the analysis based on the general (α, β)

model, that is, the graphs only constrained by the power-law distribution in degree

sequences. We first define the following two types of degree sequences.

Definition 9 (y -Degree Sequence). Given a graph G = (V ,E), the y -degree sequence

of G is a sequence Y = ⟨y1, y2, ... , y∆⟩ where ∆ is the maximum degree of G and

yi = |{u|u ∈ V ∧ deg(u) = i}|.

Definition 10 (d-Degree Sequence). Given a graph G = (V ,E), the d-degree sequence

of G is a sequence D = ⟨d1, d2, ... , dn⟩ of vertex in non-increasing order of their degrees.

Note that y -degree sequence and d-degree sequence are interchangeable. Given

a y -degree sequence Y = ⟨y1, y2, ... , y∆⟩, the corresponding d-degree sequence is

D = ⟨∆,∆, ... , ∆ − 1,∆ − 1, ... , ∆ − 1, ... , 1, ... , 1⟩ where the number i appears yi

times. Because of their equivalence, we may use only y -degree sequence or d-degree

sequence or both without changing the meaning or validity of results.

Definition 11 (Continuous Sequence). An integer sequence ⟨d1, d2, ... , dn⟩, where

d1 ≥ d2 ≥ · · · ≥ dn, is continuous if ∀1 ≤ i ≤ n − 1, |di − di+1| ≤ 1.

Definition 12 (Graphic Sequence). A sequence D is said to be graphic if there exists a

graph such that D is its d-degree sequence.

Definition 13 (Degree Set). Given a graph G , let Di(G) be the set of vertices of degree

i on G .

Furthermore, we define the d-bounded graph as

Definition 14 (d-Bounded Graph). Given a graph G = (V ,E), G is a d-bounded graph if

the degree of any vertex is upper bounded by an integer constant d .

2.1.3 Special Graphs

Definition 15 (d⃗-Regular Cycle RC d⃗n). Given a vector d⃗ = (d1, ... , dn), a d⃗-regular

cycle RC dn is composed of two cycles. Each cycle has n vertices and two i th vertices in

22

u2

v3

u4

u8

u1

u6

v6

v8

v2

v4

v3

v1

v7

v5

u5

u7

A RC 38

u2

u4

u6

v2

v1

u5

u3

u1

v4

v3
u1

B 2⃗− C 28

Figure 2-1. Special Graph Examples: The left one is a (3, 3, 3, 3, 3, 3, 3, 3)-regular cycle
and the right one is a (3, 3, 3, 3)-branch-(2, 2, 2, 2, 2, 2)-cycle. The grey
vertices consist of the optimal solution of MDS on these two special graphs.

each cycle are adjacent with each other by di − 2 multi-edges. That is, d⃗-regular cycle

RC dn has 2n vertices and the two i th vertex has the same degree di . An example RC d8 is

shown in Figure 2-1A.

Definition 16 (κ⃗-Branch-d⃗-Cycle κ⃗-BC d⃗n). Given two vectors d⃗ = (d1, ... , dn) and

κ⃗ = (κ1, ... ,κm), the κ⃗-branch-d⃗-cycle is composed of a cycle with a number of vertices

n such that each vertex has degree di as well as |κ⃗|/2 appendant branches, where |κ| is

a even number. Note that any κ⃗-branch-d⃗-cycle has |κ⃗| even number of vertices with odd

degrees. An example is shown in Figure 2-1B.

2.1.4 Existing Inapproximability Results

Here we list some inapproximability results in the literature to use later in our proofs.

(1) In d-bounded graphs, MVC is hard to be approximated into 2−(2+od(1)) log log d/ log d
for every sufficiently large integer d under unique games conjecture [10, 20].

(2) In 3-bounded graphs, MIS and MDS is NP-hard to be approximated into 140
139
− ε for

any ε > 0 and 391
390

respectively [8].

(3) Maximum clique and minimum coloring problem is hard to be approximated into
n1−ϵ on general graphs unless NP=ZPP [41].

23

2.2 Inapproximability Optimal Substructure Framework in Power-Law Graphs

In this section, we introduce a framework to derive the approximation hardness

of optimal substructure problems on power-law graphs. A graph optimization problem

is said to satisfy optimal substructure if its optimal solution is the union of the optimal

solutions on each connected component. Therefore, when a graph G is embedded

into a power-law graph G ′, the optimal solution in G ′ consists of a subset of the optimal

solution in G . According to this important property, we present the Inapproximability

Optimal Substructure Framework to prove the inapproximability factor if there exists

a Embedded-Approximation-Preserving Reduction that relates the approximation

hardness in general graphs and power-law graphs by guaranteeing the relationship

between the solutions in the original graph and the constructed graph.

Definition 17 (Embedded-Approximation-Preserving Reduction). Given an optimal

substructure problem O, a reduction from an instance on graph G = (V ,E) to another

instance on a power-law graph G ′ = (V ′,E ′) is called embedded-approximation-

preserving if it satisfies the following properties:

(1) G is a subset of maximal connected components of G ′;

(2) The optimal solution of O on G ′, OPT (G ′), is upper bounded by COPT (G) where
C is a constant correspondent to the growth of the optimal solution.

Theorem 2.1 (Inapproximability Optimal Substructure Framework). Given an optimal

substructure problem O, if there exists an embedded-approximation-preserving reduc-

tion from a graph G to another graph G ′, we can extract the inapproximability factor δ of

O on G ′ using ϵ-inapproximability of O on G , where δ is lower bounded by ϵC
(C−1)ϵ+1 and

ϵ+C−1
C

when O is a maximum and minimum optimization problem respectively.

Proof. Suppose that there exists an algorithm providing a solution of O on G ′ with size

at most δ times the optimal solution. Denote A and B to be the sizes of the produced

solution on G and G ′\G and A∗ and B∗ to be their corresponding optimal values. Hence,

we have B∗ ≤ (C− 1)A∗. With the completeness that OPT (G) = A∗ ⇒ OPT (G ′) = B∗,

24

the soundness leads to the lower bound of δ which is dependent on the type of O,

maximization or minimization problem, as follows.

Case 1: When O is a maximization problem, we start from the definition of

soundness as

A∗ + B∗ ≤ δ(A+ B) (2–1)

⇔ A∗ ≤ δA+ (δ − 1)B∗ (2–2)

⇔ A∗ ≤ δA+ (δ − 1)(C− 1)A∗ (2–3)

where (2–2) holds since B ≤ B∗ and (2–3) holds since B∗ ≤ (C− 1)A∗.

On the other hand, it is hard to approximate O within ϵ on G , thus A∗ > ϵA. Replace

it to the above inequality, we have:

A∗ < A∗δ/ϵ+ (δ − 1)(C− 1)A∗ ⇔ δ >
ϵC

(C− 1)ϵ+ 1

Case 2: When O is a minimization problem, since B∗ ≤ B, similarly

A+ B ≤ δ(A∗ + B∗)

⇔ A ≤ δA∗ + (δ − 1)B∗

⇔ A ≤ δA∗ + (δ − 1)(C− 1)A∗

Then from A > ϵA∗,

ϵ < δ + (δ − 1)(C− 1)⇔ δ >
ϵ+ C− 1

C

2.3 Hardness and Inapproximability of Optimal Substructure Problems

2.3.1 General Cycle-Based Embedding Technique

In this section, we propose a General Cycle-Based Embedding Technique on (α, β)

power-law graphs with β > 1. The basic idea is to embed an arbitrary d-bounded graph

25

into power-law graphs using a d⃗1-regular cycle, a κ⃗-branch-d⃗2-cycle and a number of

cliques K2, where d⃗1, d⃗2 and κ⃗ are defined by α and β. Before discussing the main

embedding technique, we first show that most optimal substructure problems can be

polynomially solved in both d⃗-regular cycles and κ⃗-branch-d⃗-cycle. In this context,

the cycle-based embedding technique helps to prove the complexity of these optimal

substructure problems on power-law graphs according to their corresponding complexity

results on general bounded graphs.

Lemma 1. MDS, MVC and MIS are polynomially solvable on d⃗-regular cycles.

Proof. Here we just prove MDS problem is polynomially solvable on d⃗-regular cycles.

The algorithm is simple. From an arbitrarily vertex, we select the vertex on the other

cycle in two hops. The algorithm will terminate until all vertices are dominated. Now

we will show that this gives the optimal solution. LettakeRC38 as an example. As shown

in Figure 2-1A, the size of MDS is 4. Notice that each vertex can dominate exact 3

vertices, that is, 4 vertices can dominate exactly 12 vertices. However, in RC 38 , there are

altogether 16 vertices, which have to be dominated by at least 4 vertices apart from the

vertices in MDS. That is, the algorithm returns an optimal solution. The proof of MVC

and MIS is similar.

Lemma 2. MDS, MVC and MIS is polynomially solvable on κ⃗-branch-d⃗-cycles.

Proof. Again we show the proof of MDS. First we select the vertices connecting both

the branches and the cycle. Then by removing the branches, we will have a line graph

regardless of self-loops, on which MDS is polynomially solvable. It is easy to see that

the size of MDS will increase if any one vertex connecting both the branch and the cycle

in MDS is replaced by some other vertices. The proof of MIS is similar. Note that the

optimal solution for MVC consists of all vertices since all edges need to be covered.

Theorem 2.2 (Cycle-Based Embedding Technique). Any d-bounded graph Gd can

be embedded into a power-law graph G(α,β) with β > 1 such that Gd is a maximal

26

component and most optimal substructure problems can be polynomially solvable on

G(α,β) \ Gd .

Proof. With the given β, we choose α to be max{lnmax1≤i≤d{ni · iβ}, β ln d}. Based on

τ(i) = ⌊eα/iβ⌋ − ni where ni = 0 when i > d , we construct the power-law graph G(α,β)

as the following Algorithm 1. The last step holds since the number of vertices of odd

degrees has to be even. From Step 1, we know eα = max{max1≤i≤d{ni · iβ}, dβ} ≤ dβn,

that is, the number of vertices N in graph G(α,β) satisfies N ≤ ζ(β)dβn, which means that

N/n is a constant. According to Lemma 1 and Lemma 2, since G(α,β) \ Gd is composed

of a d⃗1-regular cycle and a d⃗12 -branch-d⃗2-cycle, it can be polynomially solvable. Note that

the number of vertices in L is at most ∆ since there is at most one leftover vertex of each

degree.

Algorithm 1: Cycle Embedding Algorithm
1 α← max{lnmax1≤i≤d{ni · iβ}, β ln d};
2 For τ(1) vertices of degree 1, add ⌊τ(1)/2⌋ number of cliques K2;
3 For τ(2) vertices of degree 2, add a cycle with the size τ(2);
4 For all vertices of degree larger than 2 and smaller than ∆, construct a d⃗1-regular

cycle where d⃗1 is a vector composed of ⌊τ(i)/2⌋ number of elements i for all i
satisfying τ(i) > 0;

5 For all leftover isolated vertices L such that τ(i)− 2⌊τ(i)/2⌋ = 1, construct a
d⃗12 -branch-d⃗22 -cycle, where d⃗12 and d⃗22 are the vectors containing odd and even
elements correspondent to the vertices of odd and even degrees in L respectively.

2.3.2 APX-Hardness

In this section, we prove that MIS, MDS, MVC remain APX-hard even on power-law

graphs.

Theorem 2.3. MDS is APX-hard on power-law graphs.

27

Proof. According to Theorem 2.2, we use the cycle-based embedding technique to

show L-reduction from MDS on any d-bounded graph Gd to MDS on a power-law graph

G(α,β) since MDS is proven APX-hard on d-bounded graphs [51].

Letting ϕ be a feasible solution on Gd , we can construct MDS in G ′ such that MDS

on a K2 is 1, n/4 on a d⃗-regular cycle and n/3 on a cycle and a κ⃗-branch-d⃗-cycle.

Therefore, for a solution ϕ on Gd , we have a solution φ on G(α,β) to be φ = ϕ + n1/2 +

n2/3 + n3/4, where n1, n2 and n3 corresponds to τ(1), τ(2) ∪ L and all leftover vertices.

Hence, we have OPT (φ) = OPT (ϕ) + n1/2 + n2/3 + n3/4.

On one hand, for a d-bounded graph with vertices n, the optimal MDS is lower

bounded by n/(d + 1). Thus, we know

OPT (φ) = OPT (ϕ) + n1/2 + n2/3 + n3/4

≤ OPT (ϕ) + (N − n)/2 ≤ OPT (ϕ) + (ζ(β)dβ − 1)n/2

≤ OPT (ϕ) + (ζ(β)dβ − 1)(d + 1)OPT (ϕ)/2 =
[
1 + (ζ(β)dβ − 1)(d + 1)/2

]
OPT (ϕ)

where N is the number of vertices in G(α,β).

On the other hand, with |OPT (ϕ) − ϕ| = |OPT (φ) − φ|, we proved the L-reduction

with c1 = 1 + (ζ(β)dβ − 1)(d + 1)/2 and c2 = 1.

Theorem 2.4. MVC is APX-hard on power-law graphs.

Proof. In this proof, we show L-reduction from MVC on d-bounded graph Gd to MVC on

power-law graph G(α,β) using cycle-based embedding technique.

Let ϕ be a feasible solution on Gd . We construct the solution φ ≤ ϕ + (N −

n) since the optimal solution of MVC is n/2 on K2, cycle, d⃗-regular cycle and n on

κ⃗-branch-d⃗-cycle. Therefore, since the optimal MVC on a d-bounded graph is lower

bounded by n/(d + 1), we have

OPT (φ) ≤
[
1 + (ζ(β)dβ − 1)(d + 1)

]
OPT (ϕ)

28

On the other hand, with |OPT (ϕ) − ϕ| = |OPT (φ) − φ|, we proved the L-reduction

with c1 = 1 + (ζ(β)dβ − 1)(d + 1) and c2 = 1.

Corollary 1. MIS is APX-hard on power-law graphs.

2.3.3 Inapproximability Factors

In this section, we show the inapproximability factors on MIS, MVC and MDS on

power-law graphs respectively using the results in section 2.1.4.

Theorem 2.5. For any ε > 0, there is no 1 + 1
140(2ζ(β)3β−1) − ε approximation algorithm for

Maximum Independent Set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α,β) based on cycle-based

embedding technique in Theorem 2.2 from d-bounded graph Gd . Let ϕ and φ be feasible

solutions of MIS on Gd and G(α,β). Then OPT (φ) composed of OPT (ϕ), clique K2,

cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycles are all exactly half number of vertices.

Hence, we have OPT (φ) = OPT (ϕ) + (N − n)/2 where n and N is the number of

vertices in Gd and G(α,β) respectively. Since OPT (ϕ) ≥ n/(d + 1) on d-bounded graphs

for MIS and N ≤ ζ(β)dβn, we further have C = 1 + (ζ(β)dβ−1)(d+1)
2

from

OPT (φ) = OPT (ϕ) +
N − n
2
≤ OPT (ϕ) + (ζ(β)d

β − 1)
2

n

≤ OPT (ϕ) + (ζ(β)d
β − 1)(d + 1)
2

OPT (ϕ)

=

(
1 +
(ζ(β)dβ − 1)(d + 1)

2

)
OPT (ϕ)

According to ϵ = 140
139
− ε′ for any ϵ′ > 0 on 3-bounded graphs, then the

inapproximability factor can be derived from inapproximability optimal substructure

framework as

δ >
ϵC

(C− 1)ϵ+ 1
> 1 +

1

140C
− ε = 1 + 1

140(2ζ(β)3β − 1)
− ε

29

where the last step follows from d = 3.

Theorem 2.6. There is no 1 + 1
390(2ζ(β)3β−1) approximation algorithm for Minimum

Dominating Set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α,β) based on cycle-based

embedding technique in Theorem 2.2 from d-bounded graph Gd . Let ϕ and φ be feasible

solutions of MDS on Gd and G(α,β). The optimal MDS on OPT (ϕ), clique K2, cycle,

d⃗-regular cycle and κ⃗-branch-d⃗-cycles are n/2, n/4 and n/3 respectively. Let ϕ and φ be

feasible solutions of MDS on Gd and G(α,β). Then we have C = 1 + (ζ(β)dβ−1)(d+1)
2

similar

as the proof in Theorem 2.5.

According to ϵ = 391
390

in 3-bounded graphs, then the inapproximability factor can be

derived from inapproximability optimal substructure framework as

δ > 1 +
ϵ− 1
C
= 1 +

1

390(2ζ(β)3β − 1)

where the last step follows from d = 3.

Theorem 2.7. MVC is hard to be approximated within 1+
2(1−(2+oc(1)) log log clog c)(
ζ(β)cβ+c

1
β

)
(c+1)

on power-law

graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α,β) based on cycle-based embedding

technique in Theorem 2.2 from d-bounded graph Gd , The optimal MVC on clique

K2, cycle, d⃗-regular cycle are half number of vertices while the optimal MVC on

κ⃗-branch-d⃗-cycles are all vertices. Thus, we have C = 1 +

(
ζ(β)dβ−1+d

1
β

)
(d+1)

2
since

30

OPT (φ) ≤ OPT (ϕ) + N − n − ∆
2

+ ∆ ≤ OPT (ϕ) + (ζ(β)d
β − 1)n + n

1
β d

2
(2–4)

= OPT (ϕ) +

(
ζ(β)dβ − 1 + d

n
1− 1

β

)
n

2
(2–5)

≤ OPT (ϕ) +

(
ζ(β)dβ − 1 + d

(d+1)
1− 1

β

)
(d + 1)

2
OPT (ϕ) (2–6)

≤

1 +
(
ζ(β)dβ − 1 + d

1
β

)
(d + 1)

2

OPT (ϕ) (2–7)

where ϕ and φ be feasible solutions of MVC on Gd and G(α,β), ∆ is the maximum

degree in G(α,β). The inequality (2–4) holds since there are at most ∆ vertices in

κ⃗-branch-d⃗-cycle, i.e. ∆ = eα/β ≤ n1/βd ; (2–6) holds since there are at least d + 1

vertices in a d-bounded graph and the optimal MVC in a d-bounded graph is at least

n/(d + 1).

According to ϵ = 2− (2 + od(1)) log log d/ log d , then the inapproximability factor can

be derived from inapproximability optimal substructure framework as

δ > 1 +
ϵ− 1
C
≥ 1 +

2
(
1− (2 + oc(1)) log log clog c

)
(
ζ(β)cβ + c

1
β

)
(c + 1)

where c is the smallest d satisfying the condition in [10]. The last inequality holds since

function f (x) = (1− (2 + ox(1)) log log x/ log x)/g(x)(x + 1) is monotonously decreasing

when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.

Theorem 2.8. ρ-PDS is hard to be approximated into 2− (2+od(1)) log log dlog d
on d-bounded

graphs under unique games conjecture.

Proof. In this proof, we show the gap-preserving from MVC on (d/ρ)-bounded graph

G = (V ,E) to ρ-PDS on d-bounded graph G ′ = (V ′,E ′). w.l.o.g., we assume that d

and d/ρ are integers. We construct a graph G ′ = (V ′,E ′) by adding new vertices and

31

edges to G as follows. For each edge (vi , vj) ∈ E , create k new vertices v 1ij , ... , v
k
ij where

1 ≤ k ≤ ⌊1/ρ⌋ and ρ ≤ 1/2. Then we add 2k new edges (v lij , vi) and (v lij , vj) for all

l ∈ [1, k] as shown in Figure 2-2. Clearly, G ′ = (V ′,E ′) is a d-bounded graph.

v1 v2

v3v4

A Instance G = (V ,E)

V1

1

2

V1

k

2

...
...

V3

k

4

V3

1

4

...

v2

v3

V2

1

3 V2

k

3
...

v1

v4

V1

k

4 V1

1

4

B Reduced Instance G ′ = (V ′,E ′)

Figure 2-2. The Reduction from MVC to ρ-MDS

Let ϕ and φ be feasible solutions to MVC on G and G ′ respectively. We claim that

OPT (ϕ) = OPT (φ).

On one hand, if S = {v1, v2, ... , vj} ∈ V is the minimum vertex cover on G . Then

{v1, v2, ... , vj} is a ρ-PDS on G ′ because each vertex in V has ρ of all neighbors in

MVC and every new vertex in V ′ \ V has at least one of two neighbors in MVC. Thus

OPT (ϕ) ≥ OPT (φ). One the other hand, we can prove that OPT (φ) does not contain

new vertices, that is, V ′ \ V . Consider a vertex vi ∈ V , if vi ∈ OPT (φ), the new vertices

v lij for all vj ∈ N(vi) and all l ∈ [1, k] are not needed to be selected. If vi ̸∈ OPT (φ), it

has to be dominated by ρ proportion of its all neighbors. That is, for each edge (vi , vj)

incident to vi , either vj or all v lij have to be selected since every v lij has to be either

selected or dominated. If all v lij are selected in OPT (φ) for some edge (vi , vj), vj is still

not dominated by enough vertices if there are some more edges incident to vj and the

number of vertices v lij k is great than 1, that is, ⌊1/ρ⌋ ≥ 1. In this case, vj will be selected

to dominate all v lij . Thus, OPT (φ) does not contain new vertices. Since the vertices in V

selected is a solution to ρ-MDS, that is, for each vertex vi in graph G , vi will be selected

32

or at least the number of neighbors of vi will be selected. Therefore, the vertices in

OPT (φ) consist of a vertex cover in G . Thus OPT (ϕ) ≤ OPT (φ). Then we show the

completeness and soundness as follows.

• If OPT (ϕ) = m ⇒ OPT (φ) = m

• If OPT (ϕ) >
(
2− (2 + od(1)) log log(d/2)log(d/2)

)
m ⇒ OPT (φ) >

(
2− (2 + od(1)) log log dlog d

)
m

OPT (φ) >

(
2− (2 + od(1))

log log(d/ρ)

log(d/ρ)

)
m >

(
2− (2 + od(1))

log log d

log d

)
m

since the function f (x) = 2 − log log x/ log x is monotonously increasing for any
x > 0.

Theorem 2.9. ρ-PDS is hard to be approximated into 1 +
2(1−(2+oc(1)) log log clog c)
2+(ζ(β)cβ−1)(c+1) on power-law

graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α,β) based on cycle-based embedding

technique in Theorem 2.2 from d-bounded graph Gd , According to the optimal MVC

on OPT (ϕ), clique K2, cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycles, we have C =

1 + (ζ(β)dβ−1)(d+1)
2

from

OPT (φ) = OPT (ϕ) + n1/2 + f (ρ)n2 + g(ρ)n3

≤ OPT (ϕ) + N − n
2
≤
(
1 +
(ζ(β)dβ − 1)(d + 1)

2

)
OPT (ϕ)

where f (ρ) =

1
4
, ρ ≤ 1

3

1
3
, 1

3
< ρ ≤ 1

2

, g(ρ) = 1
3

for all ρ ≤ 1
2

and ϕ, φ be feasible solutions

of MVC on Gd and G(α,β). n1, n2 and n3 are correspondent to the number of vertices in

cliques K2, cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycle.

33

According to ϵ = 2− (2 + od(1)) log log d/ log d , then the inapproximability factor can

be derived from inapproximability optimal substructure framework as

δ > 1 +
ϵ− 1
C
≥ 1 +

2
(
1− (2 + oc(1)) log log clog c

)
2 + (ζ(β)cβ − 1)(c + 1)

where c is the smallest d satisfying the condition in [10]. The last inequality holds since

function f (x) = (1− (2 + ox(1)) log log x/ log x)/g(x)(x + 1) is monotonously decreasing

when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.

2.4 More Inapproximability Results on Simple Power-Law Graphs

2.4.1 General Graphic Embedding Technique

In this section, we introduce a general graphic embedding technique to embed

a d bounded graph into a simple power-law graph. Before presenting the embedding

technique, we first show that a graph can be constructed in polynomial time from a class

of integer sequences.

Lemma 3. Given a sequence of integers D = ⟨d1, d2, ... , dn⟩ which is non-increasing,

continuous and the number of elements is at least as twice as the largest element in D,

i.e. n ≥ 2d1, it is possible to construct a simple graph G whose d-degree sequence is D

in polynomial time O(n2 log n).

Proof. Starting with a set of individual vertices S of degree 0 and |S | = n, we iteratively

connect vertices together to increase their degrees up to given degree sequence. In

each step, the leftover vertex of highest degree is connected to other vertices one by

one in the decreasing order of their degrees. Then the sequence D will be resorted

and all zero elements will be removed. The algorithm stops until D is empty. The whole

algorithm is shown as follows (Algorithm 2).

After each while loop, the new degree sequence, called D ′, is still continuous and

its number of elements is at least as twice as its maximum element. To show this, we

34

Algorithm 2: Graphic Sequence Construction Algorithm
Input : d-degree sequence D = ⟨d1, d2, ... , dn⟩ where d1 ≥ d2 ≥ ... ≥ dn
Output: Graph H

1 while D ̸= ∅ do
2 Connect vertex of d1 to vertices of d2, d3, ... , dd1+1;
3 d1 ← 0;
4 for i = 2 to d1 + 1 do
5 di ← di − 1;
6 end
7 Sort D in non-increasing order;
8 Remove all zero elements in D;
9 end

consider three cases: (1) If the maximum degree in D ′ remains the same, there are at

least d1 + 2 vertices in D. Since D is continuous, the number of elements in D is at least

d1 + 2 + d1 − 1, that is, 2d1 + 1. Therefore, the number of elements in D ′ is 2d1, i.e.

n ≥ 2d1 still holds. (2) If the maximum degree in D ′ is decreased by 1, there are at least

2 elements of degree d1 in D. Thus, at most one element in D will become 0. Then we

have n ≥ 2d1 − 2 = 2(d1 − 1). (3) If the maximum degree in D ′ is decreased by 2, there

are at most two element in D becoming 0. Thus, n ≥ 2d1 − 3 > 2(d1 − 2).

The time complexity of the algorithm is O(n2 log n) since there are at most n

iterations and each iteration takes at most O(n log n) to sort the new sequence D.

Theorem 2.10 (Graphic Embedding Technique). Any d-bounded graph Gd can be

embedded into a simple power-law graph G(α,β) with β > 1 in polynomial time such that

Gd is a maximal component and the number of vertices in G(α,β) can be polynomially

bounded by the number of vertices in Gd .

Proof. Given a d-bounded degree graph Gd = (V ,E) and β > 1, we construct a

power-law graph G(α,β) of exponential factor β which includes Gd as a set of maximal

components. The construction is shown as Algorithm 3.

35

Algorithm 3: Graphic Embedding Algorithm
1 α← max{ β

β−1(ln 4 + β ln d), ln 2 + ln n + β ln d} and corresponding G(α,β);
2 D be the d-degree sequence of G(α,β) \ Gd ;
3 Construct G(α,β) \ Gd using Algorithm 2.

According to the lemma 3, the above construction is valid and finishes in polynomial

time. Then we show that N is upper bounded by ζ(β)2dβn, where n and N are the

number of vertices in Gd and Gα,β respectively. From the construction, we know either

α ≥ β

β − 1
(ln 4 + β ln d)⇒ α ≥ ln 4 + β ln d + α/β ⇒ e

α

dβ
≥ 4e

α
β

or

α ≥ ln 2 + ln n + β ln d ⇒ e
α

dβ
≥ 2n

Therefore, e
α

dβ
≥ 2e

α
β + n. Note that

⌊
eα

dβ

⌋
is the number of vertices of degree d . In

addition, G has at most n vertices of degree d , so D is continuous degree sequence and

has the number of vertices at least as twice as the maximum degree.

In addition, when n is large enough, we have α = ln 2 + ln n + β ln d . Hence, the

number of vertices N in Gα,β is bound as N ≤ ζ(β)eα = 2ζ(β)dβn, i.e. the number of

vertices of Gα,β is polynomial bounded by the number of vertices in Gd .

2.4.2 Inapproximability of MIS, MVC and MDS

Theorem 2.11. For any ε > 0, it is NP-hard to approximate Maximum Independent Set

within 1 + 1
1120ζ(β)3β

− ε on simple power-law graphs.

Proof. In this proof, we construct the simple power-law graph G(α,β) based on graphic

embedding technique in Theorem 2.10 from d-bounded graph Gd . Let ϕ and φ be

feasible solutions of MIS on Gd and G(α,β). Since OPT (ϕ) ≥ n/(d + 1) on d-bounded

graphs and N ≤ 2ζ(β)dβn, we further have C = 2ζ(β)dβ(d + 1) from

36

OPT (φ) ≤ N ≤ 2ζ(β)dβn ≤ 2ζ(β)dβ(d + 1)OPT (ϕ)

According to ϵ = 140
139
− ε′ for any ϵ′ > 0 on 3-bounded graphs, then the

inapproximability factor can be derived from inapproximability optimal substructure

framework as

δ >
ϵC

(C− 1)ϵ+ 1
= 1 +

1

140C− 1
− ε > 1 + 1

1120ζ(β)3β
− ε

Theorem 2.12. It is NP-hard to approximate Minimum Dominating Set within 1 +

1
3120ζ(β)3β

on power-law graphs.

Proof. From the proof of Theorem 2.11, we have C = 2ζ(β)dβ(d + 1). Then according to

ϵ = 391
390

on 3-bounded graphs, we have

δ > 1 +
ϵ− 1
C
≥ 1 + 1

3120ζ(β)3β

Theorem 2.13. There is no 1 +
2−(2+oc(1)) log log clog c

2ζ(β)cβ(c+1)
approximation algorithm of Minimum

Vertex Cover on power-law graphs under unique games conjecture.

Proof. Similar as the proof of Theorem 2.12, we have C = 2ζ(β)dβ(d + 1). Then

according to ϵ = 2 − (2 + od(1)) log log d/ log d , then the inapproximability factor can be

derived from inapproximability optimal substructure framework as

δ > 1 +
ϵ− 1
C
≥ 1 +

2− (2 + oc(1)) log log clog c

2ζ(β)cβ(c + 1)

where c is the smallest d satisfying the condition in [10].

37

Theorem 2.14. There is no 1 +
2−(2+oc(1)) log log clog c

2ζ(β)cβ(c+1)
approximation algorithm for Minimum

Positive Dominating Set on power-law graphs.

Proof. Similar as Theorem 2.14, the proof follows from Theorem 2.8.

2.4.3 Maximum Clique, Minimum Coloring

Lemma 4 (Ferrante et al. [35]). Let G = (V ,E) be a simple graph with n vertices and

β ≥ 1. Let α ≥ max{4β, β log n + log(n + 1)}. Then, G2 = G \ G1 is a bipartite graph.

Lemma 5. Given a function f (x) (x ∈ Z, f (x) ∈ Z+) monotonously decreases, then∑
x f (x) ≤

∫
x
f (x).

Corollary 2. eα
∑eα/β

i=1

(
1
d

)β
< (eα − eα/β)/(β − 1).

Theorem 2.15. Maximum Clique cannot be approximated within O
(
n1/(β+1)−ϵ

)
on large

power-law graphs with β > 1 and n > 54 for any ϵ > 0 unless NP=ZPP.

Proof. In [35], the authors proved the hardness of Maximum Clique problem on

power-law graphs. Here we use the same construction. According to Lemma 27,

G2 = G \ G1 is a bipartite graph when α ≥ max{4β, β log n + log(n + 1)} for any β ≥ 1.

Let ϕ be a solution on general graph G and φ be a solution on power-law graph G2. We

show the completeness and soundness.

• If OPT (ϕ) = m ⇒ OPT (φ) = m
If OPT (ϕ) ≤ 2 on graph G , we can solve clique problem in polynomial time by
iterating the edges and their endpoints one by one. However, G is not a general
graph in this case. w.l.o.g, assuming OPT (ϕ) > 2, then OPT (φ) = OPT (ϕ) > 2
since the maximum clique on bipartite graph is 2.

• If OPT (ϕ) ≤ m/n1−ϵ ⇒ OPT (φ) < O
(
1/(N1/(β+1)−ϵ

′)
)
m

In this case, we consider the case that 4β < β log n + log(n + 1), that is, n > 54.
According to Lemma 27, let α = β log n + log(n + 1). From Corollary 2, we have

N = eα
∆∑
i=1

(
1

i

)β
<
eα − eα/β

β − 1
=
nβ(n + 1)− n(n + 1)1/β

β − 1
<
2nβ+1 − n
β − 1

Therefore, OPT (φ) = OPT (ϕ) ≤ m/n1−ϵ < O
(
m/
(
N1/(β+1)−ϵ

′)).

38

Corollary 3. Minimum Coloring problem cannot be approximated within O
(
n1/(β+1)−ϵ

)
on large power-law graphs with β > 1 and n > 54 for any ϵ > 0 unless NP=ZPP.

2.5 Relationship between β and Approximation Hardness

As shown in previous sections, many hardness and inapproximability results are

dependent on β. In this section, we analyze the hardness of some optimal substructure

problems based on β by showing that trivial greedy algorithms can achieve constant

guarantee factors for MIS and MDS.

Lemma 6. When β > 2, the size of MDS of a power-law graph is greater than Cn where

n is the number of vertices, C is some constant only dependent on β.

Proof. Let S = (v1, v2, ... , vt) of degrees d1, d2, ... , dt be the MDS of power-law graph

G(α,β). Observing that the total degrees of vertices in dominating set must be at least the

number of vertices outside the dominating set, we have
∑i=t
i=1 di ≥ |V \ S |. With a given

total degree, a set of vertices has minimum size when it includes the vertices of highest

degrees. Since the function ζ(β − 1) =
∑∞
i=1

1
iβ−1

converges when β > 2, there exists a

constant t0 = t0(β) such that

∆∑
i=t0

i

⌊
eα

iβ

⌋
≥

t0∑
i=1

⌊
eα

iβ

⌋
where α is any large enough constant. Thus the size of MDS is at least

∆∑
i=t0

⌊
eα

iβ

⌋
≈

(
ζ(β)−

t0−1∑
i=1

1

iβ

)
eα ≈ C |V |

where C = (ζ(β)−
∑t0
i=1

1
iβ
)/(ζ(β)).

Consider the greedy algorithm which selects from the vertices of the highest degree

to the lowest. In the worst case, it selects all vertices with degree greater than 1 and a

half of vertices with degree 1 to form a dominating set. The approximation factor of this

simple algorithm is a constant.

39

Corollary 4. Given a power-law graph with β > 2, the greedy algorithm that selects

vertices in decreasing order of degrees provides a dominating set of size at most∑∆
i=2

⌊
eα/iβ

⌋
+ 1
2
eα ≈ (ζ(β)− 1/2)eα. Thus the approximation ratio is (ζ(β)− 1

2
)/(ζ(β)−∑t0

i=1 1/i
β).

Let us consider another maximization problem MIS, we propose a greedy algorithm

Power-law-Greedy-MIS as follows. We sort the vertices in non-increasing order of

degrees and start checking from the vertex of lowest degree. If the vertex is not adjacent

to any selected vertex, it is selected. The set of selected vertices forms an independent

set with the size at least a half the number of vertices of degree 1 which is eα/2. The

size of MIS is at most a half of number of vertices. Thus, the following lemma holds.

Lemma 7. Power-law-Greedy-MIS has factor 1/(2ζ(β)) on power-law graphs with β > 1.

2.6 Minor NP-Hardness on Simple Power-Law Graphs for β < 1

In the section, we show some minor NP-hardness of optimal substructure problems

on simple power-law graphs for small β < 1.

Definition 18 (Eligible Sequences). A sequence of integers S = ⟨s1, ... , sn⟩ is eligible if

s1 ≥ s2 ≥ ... ≥ sn and fS(k) ≥ 0 for all k ∈ [n], where

fS(k) = k(k − 1) +
n∑

i=k+1

min{k , si} −
k∑
i=1

si

Erdős and Gallai [31] showed that an integer sequence is graphic - d-degree

sequence of an graph, if and only if it is eligible and the total of all elements is even.

Then Havel and Hakimi [16] gave an algorithm to construct a simple graph from a

degree sequence. We now prove the following eligible embedding technique based on

this result.

Theorem 2.16 (Eligible Embedding Technique). Given an undirected simple graph

G = (V ,E), 0 < β < 1, there exists polynomial time algorithm to construct a power-law

graph G ′ = (V ′,E ′) of exponential factor β such that G is a set of maximal components

of G ′.

40

Proof. To construct G ′, we choose α = max{β ln(n − 1) + ln(n + 2), 3 ln 2}. Then

⌊eα/((n − 1)β)⌋ > n + 2, i.e. there are at least 2 vertices of degree d in G ′ \ G if there

are a least 2 vertices of degree d in G ′. According to the definition, the total degrees of

all vertices in G ′ and G are even. Therefore, the lemma will follow if we prove that the

degree sequence D of G ′ \ G is eligible.

In D, the maximum degree is ⌊eα/β⌋. There is only one vertex of degree i if 1 ≤

eα/iβ < 2, i.e. eα/β ≥ i > (eα/2)1/β.

Let us consider fD(k) in two cases:

Case 1: k ≤
⌊
eα/β/2

⌋

fD(k) = k(k − 1) +
n∑

i=k+1

min{k , di} −
k∑
i=1

di

> k(k − 1) +
T−k∑
i=k

k +

k−1∑
i=B

i +

B−1∑
i=1

2−
k∑
i=1

(T − k + 1)

= k(T − k) + (k − B)(k − 1 + B)/2 + B(B − 1)− k(2T − k + 1)/2

= (B2 − B)/2− k

where T =
⌊
eα/β

⌋
and B =

⌊
(eα/2)1/β

⌋
+ 1. Note that α/β > ln 2 (2/β + 1) since

α > 3 ln 2 and 0 < β < 1. Hence
(⌊
(eα/2)1/β

⌋
+ 1
) (⌊
(eα/2)1/β

⌋)
>
⌊
eα/β

⌋
≥ 2k , that is,

fD(k) > 0.

Case 2: k >
⌊
eα/β/2

⌋

fD(k + 1) ≥ fD(k) + 2k − 2dk+1 ≥ fD(k) ≥ ... ≥ fD(
⌊
eα/β/2

⌋
) > 0

Corollary 5. An optimal substructure problem is also NP-hard on power-law graphs for

all 0 < β < 1 if it is NP-hard on simple general graphs.

41

Proof. According to Theorem 2.16, we can embed an undirected graph G = (V ,E)

into a power-law graph G ′ of β lying in (0, 1) and of vertices polynomial time in the

size of G . Since the optimization problem has optimal substructure property and G is

a set of maximal connected components of G ′, its optimum solution for the graph G

can be computed easily from an optimal solution for G ′. This completes the proof of

NP-hardness.

2.7 Approximation Algorithms

As the computational hardness and inapproximability results of classic optimization

problems have been shown in the previous sections, the design of approximation

algorithm is still of great interest but remains open. In this section, we focus on

addressing the following questions: Can the property of power-law degree distribution

help us to design an effective algorithm framework for NP-hard optimization problems?

How can we provide a theoretical framework for analyzing approximation ratios of these

problems using this power-law degree property? Will these approximation ratios change

dramatically for different exponential factors β, i.e. in power-law graphs with different

densities?

We propose an algorithm framework, called Low-Degree Percolation (LDP)

framework, to solve the optimization problems in power-law networks, including

MIS, MDS, and MVC problems. The idea of LDP framework to percolate the graph

starting from a great number of low-degree nodes in a power-law graph, allows us to

develop a theoretical framework, which can be used to analysis the approximation ratios

via probability theory. In particular, we apply this theoretical framework to show the

approximation ratios for these problems on two well-known random power-law models

in [2, 21]. At last, numerical analysis of our proposed approaches not only validates our

theoretical analysis but also illustrates the effectiveness of our approaches in practice.

42

2.7.1 Low-Degree Percolation (LDP) Algorithm Framework

In this section, we proposed an algorithm framework to solve optimization problems

by taking advantage of the degree sequence property in power-law graphs. As one

can see, the most fundamental property of power-law graphs are that they contain a

great number of low-degree nodes, while only a small number of high-degree nodes.

Therefore, the idea of our proposed Low-Degree Percolation (LDP) algorithm framework

is to sort the nodes by their degree and percolate the graph from the nodes of lowest

degree. The process continues in residual graph iteratively until no more nodes, which

are surely in optimal solution, can be detected. At last, we apply existing approximation

approaches to detect the solution in the remaining graph.

For MDS and MVC problems, as shown in Algorithm 4, since the node incident to

a node of degree 1 certainly belongs to an optimal solution, we percolate the graph by

adding all the neighbors of nodes with degree 1 in each iteration. Until no more nodes of

degree 1 exists in residual graph, we apply existing approximation algorithm in [83] for

MDS (or [52] for MVC) to obtain the solution in this residual graph.

Algorithm 4: LDP Algorithm for MDS/MVC Problems
Input : Power-law graph G
Output: MDS (or MVC) S

1 while ∃ Nodes of degree 1 do
2 foreach Node v of degree 1 do
3 Add its neighbor N(v) into S ;
4 Remove v from G ;
5 end
6 Remove all nodes incident to S from graph G ;
7 end
8 Determine the leftover MDS (or MVC) in G using existing approximation algorithm

in [83] (or [52]) and add them into S ;
9 return S ;

On the other hand, Algorithm 5 shows the algorithm for MIS. In this case, the nodes

of degree 1 will belong to the optimal solution, and in the meanwhile, it is certain that

their neighbors cannot be in optimal solution any more. Therefore, in order to obtain

43

MIS, we select all nodes of degree 1 into the solution in each iteration. At last, we apply

the approximation algorithm in [40] to obtain the MIS in the remaining graph.

Algorithm 5: LDP Algorithm for MIS Problem
Input : Power-law graph G
Output: MIS S

1 while ∃ Nodes of degree 1 do
2 foreach Node v of degree 1 do
3 Add v into S ;
4 Remove v and all its neighbors N(v) from G ;
5 end
6 end
7 Determine the leftover MIS in G using existing approximation algorithm in [40]

and add them into S ;
8 return S ;

Here, we note that in a special case that two nodes of degree 1 are connected, the

optimal solution of MDS (or MVC, MIS) contains either one of them.

2.7.2 Approximation Ratio Analysis

In this section, we show the approximation ratio analysis of LDP Algorithms in

both structural and expected random power-law networks. To do this, we first provide a

theoretical framework, using LDP algorithm, to analyze the approximation ratio based

on the probability that a node does not connect to any node of degree 1. Then, this

framework is applied to show the ratio of optimization problems in two different models.

2.7.2.1 Theoretical framework

In this theoretical framework, as the connected component of size 2 is trivial, we

mainly focus on the ratio analysis in the rest part of power-law graphs. To begin with, we

first provide a formal proof of the following Lemma 8 (Similar argument for Corollary 6),

which has been briefly discussed the LDP algorithms.

Lemma 8. In the optimal solution to MDS and MVC, if we do not consider the case of

connected components with size 2, there do not exist any nodes of degree 1 and all

nodes incident to at least one node of degree 1 are selected.

44

Proof. In the proof, let u be a node of degree 1 incident to another v of arbitrary degree

larger than 1, we consider several cases: (1) If neither u and v is selected in optimal

solution, no neighbor is select for u and u is not selected as well, this leads to an

infeasible solution; (2) If both u and v are selected, it is easy to see that the solution is

no more optimal; (3) If u is selected instead of v , we have to select a set of nodes to

satisfy v if v has degree no less than 2; (4) If v is selected instead of u, both u and v are

already satisfied, which means the size of the solution less than the size in a solution

containing u. According to these observations, the proof is complete.

Corollary 6. In the optimal solution to MIS, if we do not consider the case of connected

components with size 2, all nodes of degree 1 and all nodes incident to at least one

node of degree 1 are selected.

Next, we define µ(α, β, i) to be the probability that a node v of degree i not incident

to any nodes of degree 1 in a power-law graph G(α,β). Our purpose is to analyze the

approximation ratio based on µ(α, β, i) in this graph G(α,β).

Let X ui be a random variable that a node u of degree i does not connect to any

nodes of degree 1. Then, we have

X ui =
{ 1, u ∈ D1
0, u ̸∈ D1

where D1 is a set of nodes incident to at least one node of degree 1. Note that for all

nodes of the same degree, they have the same random variables. For simplicity, we

define Xi to be a random variable that some node of degree i . Therefore, we have the

expected value of node u not incident to any nodes of degree 1 as

E(Xi) = µ(α, β, i)

Since the number of nodes of degree i is equal to eα/iβ, by letting ∆ = eα/β and

X =
∑∆
i=2

eα

iβ
Xi , we have the following lemma:

45

Lemma 9. The expected number of nodes of degree no less than 2 not incident to any

nodes of degree 1 is
∆∑
i=2

eα

iβ
µ(α, β, i)

Proof. The expected number of nodes not incident to any nodes of degree 1 is the sum

of all nodes of degree no less than 2, i.e. X =
∑∆
i=2

eα

iβ
Xi . Then we have

E(X) =

∆∑
i=2

eα

iβ
E(Xi) =

∆∑
i=2

eα

iβ
µ(α, β, i)

Lemma 10. The variance of X is upper bounded by

e2α
∆∑
i=2

∆∑
j=2

√
χ(α, β, i)χ(α, β, j)

(ij)β

where χ(α, β, i) = µ(α, β, i)(1− µ(α, β, i)).

Proof. For a random variable corresponds to a node of degree i not incident to any

nodes of degree 1, the variance is

Var(Xi) =
(
1− i

ζ(β − 1)

)(
1−

(
1− i

ζ(β − 1)

))
= µ(α, β, i)(1− µ(α, β, i))

For any two variables correspond to two nodes of degree i and j not incident to any

nodes of degree 1, according to Cauchy-Schwarz Inequality, we have

|Cov(Xi ,Xj)| ≤
√
Var(Xi)Var(Xj) =

√
χ(α, β, i)χ(α, β, j)

Then, we sum them up and obtain

∑
Xi ,Xj

|Cov(Xi ,Xj)| ≤
∑
Xi ,Xj

√
Var(Xi)Var(Xj)

≤
∆∑
i=2

eα

iβ

(∆∑
j=2

eα

jβ

√
χ(α, β, i)χ(α, β, j)

)
= e2α

∆∑
i=2

∆∑
j=2

√
χ(α, β, i)χ(α, β, j)

(ij)β

46

Therefore, we have the variance of X to be

Var(X) =
∑
Xi ,Xj
|Cov(Xi ,Xj)| ≤ e2α

∑∆
i=2

∑∆
j=2

√
χ(α,β,i)χ(α,β,j)

(ij)β

Lemma 11. The number of nodes of degree no less than 2 which is not incident to any

nodes of degree 1 is larger than λ
∑∆
i=2

eα

iβ
with probability at most

1(∑∆
i=2

1

iβ

(
λ−µ(α,β,i)

))2
∑∆
i=2

∑∆
j=2

√
χ(α,β,i)χ(α,β,j)

(ij)β

+ 1

Proof. Let ϕ = λ
∑∆
i=2

eα

iβ
, according to One-Sided Chebyshev Inequality,

Pr [X ≥ ϕ] = Pr
[
X − E(X) ≥ ϕ− E(X)√

Var(X)

√
Var(X)

]
≤ 1

(ϕ−E(X))2
Var(X)

+ 1
≤ 1(∑∆

i=2
1

iβ

(
λ−µ(α,β,i)

))2
∑∆
i=2

∑∆
j=2

√
χ(α,β,i)χ(α,β,j)

(ij)β

+ 1

For simplicity, we define the following pλ and obtain the Corollary 7.

pλ =
1(∑∆

i=2
1

iβ

(
λ−µ(α,β,i)

))2
∑∆
i=2

∑∆
j=2

√
χ(α,β,i)χ(α,β,j)

(ij)β

+ 1

Corollary 7. The number of nodes of degree no less than 2 incident to at least one node

of degree 1 is at least (1− λ)
∑∆
i=2

eα

iβ
with probability at least 1− pλ.

Then, based on Lemma 8, we derive the following approximation ratios of MDS and

MVC in a power-law graph G(α,β):

47

Theorem 2.17 (Main Theorem (MDS&MVC)). In a power-law graph G(α,β), by using

Algorithm 4, MDS and MVC can be approximated into

1 + (Ψ− 1)λ

with probability at least 1 − pλ, where Ψ is the approximation ratio of MDS (or MVC) in

Algorithm [83] (or [52]) w.r.t. a graph of size at most eα
∑∆
i=2

1
iβ

.

Proof. Let ℓ be the number of nodes incident to degree 1 in some power-law graph

G(α,β). We have the approximation ratio as

ℓ+ΨOPT

ℓ+OPT
≤
ℓ+Ψ(

∑∆
i=2

1
iβ
− ℓ)

ℓ+
∑∆
i=2

1
iβ
− ℓ

According to Corollary 7, we have ℓ ≥
∑∆
i=2

1
iβ
− λ

∑∆
i=2

1
iβ

with probability at least 1− pλ.

The proof is complete.

In terms of MIS, we have the approximation ratio as follows:

Theorem 2.18 (Main Theorem (MIS)). In a power-law graph G(α,β), by using Algorithm 5,

MIS can be approximated into

N + eα
(
λ
∑∆
i=2

1
iβ

)
N + 1

Ψ
eα
(
λ
∑∆
i=2

1
iβ

)
with probability at least 1 − pλ, where N is the number of nodes with degree 1, Ψ is the

approximation ratio of MIS in Algorithm [40] w.r.t. a graph of size at most eα
∑∆
i=2

1
iβ

.

The proof is omitted due to its similarity of the proof in Theorem 2.17.

Next, we focus on applying this framework onto PLRG model and analyzing the

approximation ratios.

2.7.2.2 Power-law random graph

In PLRG graph, the straightforward computation of µPLRG(α, β, i) is intractable

due to the difficulty to calculate all possible combinations. To this end, we consider each

case that there are particular number of connected components of size 2 in PLRG. At

48

last, the approximation factors can be derived from the law of total probability. In the

rest of this subsection, we show the probability to have τ connected component of size

2 in a PLRG graph and each µτPLRG(α, β, i) respectively, and apply them to obtain the

approximation ratios.

Lemma 12. The probability Pr [C2 = τ] that there are τ connected components of size 2

in a PLRG graph is (
w
2τ

)
(2τ)!!

(
N−w
w−2τ

)
(w − 2τ)!

N!!/(N − 2w − 1 + 2τ)!!

where N = eαζ(β − 1), w = eα is the size of nodes of degree 1.

Proof. In order to have τ connected component of size 2, 2τ mini-nodes are selected

first from all w nodes of degree 1. Moreover, there are (2τ − 1)!! possibilities to match

these 2τ mini-nodes. Since the number of perfect matching f (n) for n mini-nodes is

(n − 1)!!, the probability can be calculated by simplifying the following equation.

Pr [C2 = τ] =

(
w
2τ

)
(2τ)!!

(
N−w
w−2τ

)
(w − 2τ)!f (N − 2w + 2τ)
f (N)

Lemma 13. In a PLRG graph G , if there are τ connected component of size 2, the

probability that a node v of degree i not incident to any nodes of degree 1 is

µτPLRG(α, β, i) =
{ ∏w−1

k=0
Nτ−i−wτ−k
Nτ−wτ−k , If Nτ − i − w τ > w τ ;

0, otherwise.

where Nτ = eαζ(β − 1)− 2τ , w τ = eα − 2τ is the size of nodes of degree 1.

Proof. Let D1 be a set of nodes incident to at least one node of degree 1. Consider

that the whole mini-nodes are composed of three subsets, i.e., i nodes correspondent

to v , w τ nodes correspondent to all nodes of degree 1 and all leftover nodes, which is

referred to as Ni and Nw and Nτ \ {Ni ∪ Nw} respectively. When Nτ − i − w τ < w τ , there

are not enough mini-nodes to match all nodes of degree 1, the probability that v ̸∈ D1 is

0. Otherwise, in order for v ̸∈ D1, we have to select the nodes incident to all nodes in Nw

49

from N \ {Ni ∪ Nw}.

Pr [v ̸∈ D1] =
(
Nτ−i−wτ

wτ

)
w τ !f (Nτ − 2w τ)(

Nτ−wτ

wτ

)
w τ !f (Nτ − 2w τ)

=

wτ−1∏
k=0

Nτ − i − w τ − k
Nτ − w τ − k

where f (n) = (n − 1)!!, representing the number of perfect matching for n nodes.

Theorem 2.19. In a PLRG graph G , by using Algorithm 4, MDS and MVC can be

approximated into

1 + (Ψ− 1)λ

with probability at least
⌊eα/2⌋∏
τ=0

Pr [C2 = τ](1− pτλ)

where pτλ =
1

(λτ−µ(α,β,2))2

χ(α,β,2)
+1

in which λτ = λ+ τ∑∆
i=2

1

iβ

.

Proof. Consider one case that there are τ connected components in the power-law

graph. Thus, according to Theorem 2.17, the probability that the approximation ratio is

smaller than 1+(Ψ−1)λ is 1−pτλ for pτλ =
1

(λτ−µ(α,β,2))2

χ(α,β,2)
+1

where λτ = λ+ τ∑∆
i=2

1

iβ

. Therefore,

according to the law of total probability, the theorem follows by taking into account all τ ,

which ranges from 0 up to ⌊eα/2⌋.

For MIS problem, the approximation ratio can be obtained as

N + eα
(
λ
∑∆
i=2

1
iβ

)
N + 1

Ψ
eα
(
λ
∑∆
i=2

1
iβ

)
with probability at least

∏⌊eα/2⌋
τ=0 Pr [C2 = τ](1 − pτλ), where pτ ′λ =

1
(λτ ′−µ(α,β,2))2

χ(α,β,2)
+1

in which

λτ ′ = λ+ τ∑∆
i=2

1

iβ

.

Numerical Analysis

Fig. 2-3 illustrates the performance of our LDP algorithms in random power-law

graphs, along with the relation between different β and the corresponding approximation

ratios, from both theoretical and practical perspectives.

50

��

����

����

����

����

����

����

���	

���� ���� ���� ���� ���	 ���
 ���� �� ����

�������������������

���������
�!"������
�#�������

���������$���
�!"������$���
�#�������$���

A ERPL Model

��

����

��

����

��

����

��

����

��

����

��

���� ���� ���� ���� ���	 ���
 ���� �� ����

�������������������

���������
�!"������
�#�������

���������$���
�!"������$���
�#�������$���

B SRPL Model

Figure 2-3. Numerical results of our LDP algorithms on different β (α = 5): (1)
Theoretical results shows the approximation ratios with probability at least
1− o(1). As one can see, our LDP algorithms can obtain the optimal
solution for all these problems after β gets larger than 1.6 and 1.7 in ERPL
and SRPL respectively, which covers the range of β in most real-world
networks [18]. For the other smaller exponential factors β, we can see that
the approximation ratios are a little bit higher, especially up to 5 for MDS and
MIS problems for SRPL model. However, the probabilities that these two
problems can obtain the approximation ratios less than 1.5 using LDP
algorithms are at least 0.95 (only a little bit lower than 1− o(1)). (2)
Experimental results further reveals that our LDP algorithms can achieve
even better solutions than theoretical bounds. (We tests on 100 cases and
choose the average.) As illustrated in Fig. 2-3, the approximation ratios of all
MDS,MVC,MIS problems is no larger than 1.2 and 2.5 even when β = 1.3 in
ERPL and SRPL models respectively.

2.8 Related Works

Many experimental results on random power-law graphs give us a belief that

the problems might be much easier to solve on power-law graphs. Eubank et al. [32]

showed that a simple greedy algorithm leads to a 1 + o(1) approximation factor on

MINIMUM DOMINATING SET (MDS) and MINIMUM VERTEX COVER (MVC) on power-law

graphs (without any formal proof) although MDS and MVC has been proved NP-hard

to be approximated within (1 − ϵ) log n and 1.366 on general graphs respectively

[28]. In [73], Gopal also claimed that there exists a polynomial time algorithm that

guarantees a 1 + o(1) approximation of the MVC problem with probability at least

1 − o(1). Unfortunately, there is no such formal proof for this claim either. Furthermore,

51

several papers also have some theoretical guarantees for some problems on power-law

graphs. Gkantsidis et al. [36] proved the flow through each link is at most O(n log2 n)

on power-law random graphs where the routing of O(dudv) units of flow between each

pair of vertices u and v with degrees du and dv . In [36], the authors take advantage of

the property of power-law distribution by using the structural random model [2, 2] and

show the theoretical upper bound with high probability 1 − o(1) and the corresponding

experimental results. Likewise, Janson et al. [48] gave an algorithm that approximated

MAXIMUM CLIQUE within 1 − o(1) on power-law graphs with high probability on the

random poisson model G(n,α) (i.e. the number of vertices with degree at least

i decreases roughly as n−i). Although these results were based on experiments

and various random models, they raise an interest in investigating hardness and

inapproximability of optimization problems on power-law graphs.

Recently, Ferrante et al. [35] had an initial attempt on power-law graphs to show

the NP-hardness of MAXIMUM CLIQUE (CLIQUE) and MINIMUM GRAPH COLORING

(COLORING) (β > 1) by constructing a bipartite graph to embed a general graph into

a power-law graph and NP-hardness of MVC, MDS and MAXIMUM INDEPENDENT SET

(MIS) (β > 0) based on their optimal substructure properties.

52

CHAPTER 3
VULNERABILITY ASSESSMENT

In this chapter, using the well-known random power-law graph model (SRPL) in

[2], we did an in-depth analysis using probability theory with respect to different kinds

of threats: random failures, preferential attacks and degree-centrality attacks. Our

significant conclusions are (1) A complex network can tolerate random failures if its

exponential factor is less than 2.9, (2) Power-law networks are more robust under

preferential node attacks and degree-centrality node attacks when they have smaller

exponential factor β, and (3) In order to maintain a reliable complex system, we optimize

the power-law networks by investigating on the optimal range of exponential factor

β beforehand. For both communication networks and social networks, the best β is

illustrated to be lying in the interval [1.8, 2.5], which gives a decent explanation to the

structures of real-world networks [4, 12, 34, 74]. When β < 1.8, the maintenance of

network is very costly, and when β > 2.5, the network vulnerability is unpredictable due

to its dependence on the specific attacking strategy. (3) When cascading failures occur,

power-law networks become extremely vulnerable when the failures can be propagated

more than 2 hops.

3.1 Metric

One of the most crucial question is which measure copes with the network

vulnerability the best? There have been many studies proposing different metrics

to account for the network vulnerability [3, 5, 60, 63], among which the degree of

suspected nodes or edges [5], the average shortest path length [3], the global clustering

coefficients [60], the available number of compromised s − t flows [63], the diameters,

the relative size of the largest cluster and the average size of the isolated clusters [5]

appear to be the most popular and effective. Unfortunately, these mentioned measures

do not seem to cast well for some particular kinds of network vulnerabilities, especially

when network fragmentation is of high priority, as depicted in Figure 1.

53

Let us consider a simple example in Figure 3-1 illustrating a small portion of the

Internet, where nodes v1, v2, ... , v7 are ISPs and the rest are consumers or transmission

nodes. As revealed in this figure, any successful corruptive attacks to nodes v8 and v10

are sufficient to bring the whole network down to its knees with no satisfied customers.

In a different attacking strategy, the removal of node v7 or v9, if the adversary was to

use maximum degree centrality as the metric, does not appear to harm the network

function because all customers are still satisfied. These removals also reduce the

global clustering coefficients to 0 and increase the average shortest path to nearly 3.

Besides, if the attacker uses the available number of compromised flows from v1 to v2,

the destructions of nodes v4 and v7 will drop the flow to 1, and they still, unfortunately,

cannot destroy the existence of the giant ISP component providing services to the

(almost) whole network.

V3 V6 V10 V13 V16

V2 V5
V15

V1 V4 V8 V11 V14

V12V9V7

V17

V18

V19

Figure 3-1. An Example of Internet: the removal of v8 and v10 (grey nodes) is sufficient to
destroy the function of the whole network such that only less than 40%
nodes connect each other.

This example illustrates an important point that the other metrics are lack of: In

order to break down the network, we need to somehow control the balance among

disconnected components while ensuring the nonexistence of giant components. One

possible and effective way to do so is to measure the total pairwise connectivity (P),

i.e. the number of connected node-pairs [27] in the network. Back to our example,

a scrutiny look into the destructions of nodes v8 and v10, which we know can break

54

down the network function, reveals that they, indeed, reduce the network total pairwise

connectivity to its greatest extent (more than 60%). This great reduction, as a result,

significantly malfunctions the whole network. The measure P also lends itself effectively

a lot of practical network applications. As we discussed above, since many large-scale

networks have been shown to be power-law networks, the removal of critical nodes

and links regarding this metric not only reduces the network performance but also

can possibly disconnect those networks from the outside world. Another application

of this metric can be found in destroying terrorist networks, e.g. to breakdown the

communication between any two terrorist individuals to the greatest extent, as well as

protecting the functionality in communication networks.

3.2 Threat Taxonomy and Notations

In the rest of this chapter, we focus on investigating the vulnerability of power-law

networks under random failures or intentional attacks. This section consists of the

following parts: (1) threat taxonomy, including random failures and intentional attacks,

and (2) useful notations.

3.2.1 Threat Taxonomy

In this paper, we focus on investigating the robustness of power-law networks

under random failure and two types of intentional attacks, i.e. preferential attack and

degree-centrality attack.

Definition 19 (Random Failure). Each node in G(α,β) fails randomly with the same

probability.

Definition 20 (Preferential Attack). Each node in G(α,β) is attacked with higher probabili-

ty if it has a higher degree.

Definition 21 (Degree-Centrality Attack). The adversary only attacks the set of degree-

centrality nodes in G(α,β).

Definition 22 (Random Cascading Failures). Each node in G(α,β) fails randomly with the

same probability, and the failures can be cascaded.

55

3.2.2 Notation Explanation

With respect to each threat, we define the residual networks of the power-law

network G(α,β) as Gr , Gp and Gc after the occurrence of random failure, preferential

attack and degree-centrality attack respectively. Their corresponding expected degree

sequences are denoted as d⃗r , d⃗p and d⃗c , where the number of d ri , d
p
i and dci are referred

to as y ri , y
p
i and y ci .

In addition, we define a power-law network under certain threats to be highly-

connected if a.s. its pairwise connectivity P = Θ(n2) and lowly-connected otherwise.

3.3 Preliminaries

In this section, we first present some useful results in the literature, which illustrate

the important relations between the size of largest connected components and

the degree sequence in random networks. Based on them, we then derive some

fundamental results to evaluate the robustness of power-law networks. In this paper,

the size of a connected component S ⊆ G is the total number of nodes in S and the

connected component S is called giant component if its size is Θ(n).

3.3.1 Previous Works

Lemma 14 (M. Molloy and B. Reed [68]). In a random graph G with λin nodes of degree

i where
∑∆
i=1 λi = 1 for the maximum degree ∆,

Q =

n∑
i=1

i(i − 2)λi (3–1)

is a metric which can be applied to determine whether there is giant components in G .

The giant components exist if Q > 0 and ∆ < n1/4 − ϵ. Otherwise, there is a.s. no giant

component if Q < 0 and ∆ < n1/8 − ϵ.

Lemma 15 (F. Chung et al. [21]). In a random graph G with degree sequence d⃗ =

(d1, d2, ... , dn), the giant component a.s. exists if its expected average degree d is at

least 1, and there is a.s. no giant component if its expected second-order average

degree d̃ is at most 1. Furthermore, all connected components have volume (the sum

56

of degrees in a connected component) at most
√
n log n with probability at least 1− o(1)

if d̃ < 1. Here the expected average degree d and second-order average degree d̃ are

defined as

d =
1

n

n∑
i=1

di , d̃ =

∑n
i=1 d

2
i∑n

i=1 di
(3–2)

where di is the elements in the degree sequence.

Corollary 8. All connected components a.s. have sizes at most 1
2

√
n log n + 1 if d̃ < 1.

Proof. Consider a connected component S , the volume of S is defined as Vol(S) =∑
vi∈S di . Since there are at least |S | − 1 edges in a connected component of size |S |,

we have 2(|S | − 1) ≤ Vol(S) ≤
√
n log n. Therefore, the size of S is upper bounded by

1
2

√
n log n + 1.

3.3.2 Robustness of Intact Power-law Networks

Theorem 3.1. For a power-law network represented as a (α, β) graph G(α,β),

• If β < 3.47875, the pairwise connectivity P is Θ(n2);

• If β ≥ 3.47875, the range of pairwise connectivity P is a.s. at most 1
2
n
(
c(β)n

2
β log n − 1

)
.

where c(β) = 16/
[
ζ(β)

(
2− ζ(β−2)

ζ(β−1)

)]2
is a constant on any given β.

To prove Theorem 3.1, we first show the relation between the largest component

and our metric, the total pairwise connectivity, in the following lemma.

Lemma 16. Suppose that the maximum size of a connected component in the graph

G = (V ,E) is ℓ, the pairwise connectivity P is then at most n(ℓ−1)
2

.

Proof. To prove the upper bound, we consider the worst case that the whole network

consists of all connected components of size ℓ except some leftover nodes. Suppose

that there are c1 connect components of size ℓ and the number of leftover nodes is c2,

we have n = c1ℓ+ c2. Therefore, the pairwise connectivity P is

P ≤ c1
(
ℓ

2

)
+

(
c2
2

)
≤ c1

(
ℓ

2

)
+
c2
ℓ

(
ℓ

2

)
=
c1ℓ+ c2

ℓ

(
ℓ

2

)
=
n(ℓ− 1)
2

57

Proof of Theorem 3.1:

Proof. First, according to F. Chung et al. [2], we can find the threshold 3.47875 of β

such that Q > 0 when β < 3.47875 and Q < 0 when β > 3.47875.

When β < 3.47875, according to Lemma 14, since Q > 0, there exists one giant

component of size Θ(n). Therefore, the pairwise connectivity P is Θ(n2).

When β > 3.47875, according to Aiello et al. [2], a connected component S in the

(α, β) graph a.s. has the size at most c(β)n
2
β log n. Then the upper bound of P follows

directly from Lemma 16.

In the following three sections, since the power-law networks with β at least 3.47875

are lowly-connected even if they are not attacked, we will focus on exploiting the

robustness of power-law networks with β less than 3.47875 under random failures,

preferential attacks and degree-centrality attacks respectively.

3.4 Random Failures

In this section, we focus on the robustness of power-law networks after random

failures, in which each node has the same probability p (0 < p < 1) to fail. The total

pairwise connectivity P in the residual graph Gr is proven as in the following Theorem

3.6. Based on this theorem, we further investigate the good range of exponential factor

β.

3.4.1 Robustness under Random Failures

Theorem 3.2. In a residual graph Gr of G(α,β) after random failures,

• If β < βp, the expected pairwise connectivity E(P) is a.s. Θ(n2);

• If β ≥ βp, the pairwise connectivity P is a.s. at most 1
2
n
(
cr(β)n

2
β log n − 1

)
.

where βp satisfies that (1− p)ζ(βp − 2)− (2− p)ζ(βp − 1) = 0 and

cr(β) = 16/

[
ζ(β)

(
2− p − (1− p)ζ(β − 2)

ζ(β − 1)

)]2
.

58

To prove Theorem 3.6, we first show the expected degree distribution in Gr as

follows.

Lemma 17. The expected degree distribution of graph Gr is

E(y ri) = (1− p)i+1
∆∑
k=i

(
k

i

)
eα

kβ
pk−i

where degree i is 1 ≤ i ≤ ∆.

Proof. Let pik be the probability that a node v of degree k in G(α,β) has its degree to be i

in Gr . When k < i , it is clear that pik = 0; otherwise when k ≥ i , v will become a node of

of degree i in Gr if and only if v itself does not fail but k − i of its neighbors fail. Hence,

the probability pik is
(
k
i

)
(1− p)[pk−i(1− p)i], i.e.

(
k
i

)
pk−i(1− p)i+1.

Thus, according to the basic definition of expected value, the expected number of

nodes of degree i in Gr is

E(y ri) =
∆∑
k=1

pik
eα

kβ
= (1− p)i+1

∆∑
k=i

(
k

i

)
eα

kβ
pk−i

Proof of Theorem 3.6:

Proof. First of all, we show that Lemma 15 cannot be applied here. Consider the

expected second-order average degree d̃r of Gr , we have

d̃ = p + (1− p)ζ(β − 2)
ζ(β − 1)

It is easy to see that d̃ > 1 for any p and β.

In an alternative way, we use Lemma 14 and branching process method to prove

our theorem. The basic idea is as follows: according to the expected degree of Gr ,

we first find a threshold βp using Lemma 14, which determines whether the total

pairwise connectivity P of the residual network Gr is a.s. Θ(n2) or not. If not, that is,

β > βp, we further use branching process method to prove that P in Gr is a.s. at most

59

1
2
n
(
cr(β)n

2
β log n − 1

)
. First, we compute βp for Gr as

Qr =

∆∑
i=1

i(i − 2)(1− p)i+1
∆∑
k=i

(
k

i

)
eα

kβ
pk−i (3–3a)

= eα(1− p)
∆∑
i=1

1

iβ

i∑
j=1

j(j − 2)
(
i

j

)
pi−j(1− p)j (3–3b)

= eα(1− p)2
∆∑
i=1

i2(1− p)− i(2− p)
iβ

(3–3c)

.
= eα(1− p)2 [(1− p)ζ(β − 2)− (2− p)ζ(β − 1)] (3–3d)

where step (3–3c) follows similarly from the calculation of expected value and variance

in binomial distribution.

Let us consider the case that the threshold βp satisfies (1−p)ζ(β−2)− (2−p)ζ(β−

1) = 0. When β < βp, we have Qr > 0. Thus, the expected pairwise connectivity E(P) is

a.s. Θ(n2) according to Lemma 14.

Algorithm 6: Branching Process Method
1 i ← 0;
2 E0 = L0 = {v} by picking an arbitrary node v ;
3 while |Li | ̸= 0 do
4 i ← i + 1;
5 Choose an arbitrary u from Li−1 and expose all its neighbors N(u);
6 Ei = Ei−1 ∪ N(u);
7 Li = (Li \ ({u}) ∪ (N(u) \ Ei−1);
8 end

When β > βp, we use the following branching process method (Algorithm 6) on

Gr according to its expected degree sequence E(y ri). In the algorithm, we define Ei

and Li as the set of exposed nodes and live nodes in iteration i respectively, where live

nodes are referred to as the subset of exposed nodes whose neighbors have not been

exposed. Note that |Li | = 0 if and only if the entire component is exposed. For simplicity,

we define random variables Ei = |Ei | and Li = |Li | as the number of exposed nodes and

live nodes. Let T denote the whole number of iterations in branching process, that is, T

60

also measures the size of connected component since exactly one node is exposed in

each iteration. We further define an edge to be a “backedge” if it connects u and some

node in Ei−1. We denote Di = |N(u)| and Bi = |N(u) ∩ Ei−1| − 1 measuring the degree

of the node exposed in iteration i and the number of “backedge”. By definition, we have

Li − Li−1 = Di − Bi − 2 immediately.

Then, we calculate E(Di), E(Bi) and E(Li) respectively. Consider one edge in

original graph G(α,β). It still exists iff both endpoints are not failed, that is, the expected

number of edges in Gr is (1− p)2m. Therefore,

E(Di) =
∆∑
i=1

i
i(1− p)i+1

∑∆
k=i (

k
i)
eα

kβ
pk−i

(1− p)2m

=
1

ζ(β − 1)

∆∑
i=1

i2(1− p) + ip
iβ

.
= (1− p)ζ(β − 2)

ζ(β − 1)
+ p

Since |N(u) ∩ Ei−1| ≥ 1, we have E(Bi) ≥ 0. By substituting E(Di) and E(Bi) into

Li − Li−1 = Di − Bi − 2, we have

E(Li) = L1 +
i∑
j=2

E(Lj − Lj−1)

= d0 +

i∑
j=2

E(Dj − Bj − 2)

≤ d0 + (i − 1)
(
(1− p)ζ(β − 2)

ζ(β − 1)
+ p − 2

)
= d0 − λ(p, β)(i − 1)

where λ(p, β) = 2− p − (1− p) ζ(β−2)
ζ(β−1) and the initial node is assumed to have degree d0.

Since |Lj − Lj−1| ≤ ∆ = e
α
β , according to Azuma Martingale Inequality [22],

Pr [|Li − E(Li)| > T] ≤ 2e
−T 2

2ie
2α
β

61

where i = 16
(λ(p,β))2

e
2α
β log n = cr(β)n

2
β log n and T = λ(p, β)i/2. Since we know

E(Li) + T ≤ d0 − λ(p, β)(i − 1) +
λ(p, β)

2
i < 0

for any d0. Therefore,

Pr
[
T >

16

(λ(p, β))2
e
2α
β log n

]
= Pr[T > i]

≤ Pr[Li > 0] ≤ Pr[Li > E(Li) + T)]

≤ 2e
−T 2

2ie
2α
β =

2

n2

Thus, the probability that, in graph Gr , there is a non-failure node v belonging to a

connected component of size larger than cr(β)n
2
β log n is at most n 2

n2
= o(1), i.e. Gr has

the largest connected component of size a.s. cr(β)n
2
β log n. Hence, the upper bound of

pairwise connectivity in Gr follows from Lemma 16 directly.

3.4.2 Good Range of β under Random Failures

According to Theorem 3.6, we exploit the good range of exponential factor β in

terms of the pairwise connectivity P of power-law networks. By obtaining the threshold

βp from (1 − p)ζ(βp − 2) − (2 − p)ζ(βp − 1) = 0, the relation between threshold βp and

failure probability p can be revealed in the following Fig. 3-2.

����

�����

��

�����

����

�����

����

�����

����

�����

���	

���	�

�� ���� ���� ���� ���	 ���� ���
 ���� ����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������� ���!��"�"����#��

$�%��#&����������!�'��&(�'�)��'��*�

(�'�#&����������!�'��&(�'�)��'��*�

Figure 3-2. Relation between Threshold βp and Failure Probability p

62

Based on Theorem 3.6, power-law networks are highly-connected when β > βp

and lowly-connected otherwise. As one can see from Fig. 3-2, power-law networks of

exponential factor β > 2.9 will still remain highly-connected under random failures even

when the failure probability p is unrealistically 0.8. That is, we can confidently claim

that power-law networks have an extremely high tolerance to random failures when its

exponential factor β < 2.9.

3.5 Preferential Attacks

As power-law networks are tolerable to random failures, one will question whether

it can still tolerate intentional attacks if the intruders intend more to attack “hub” nodes.

In this section, we focus on the robustness of power-law networks under preferential

attacks. As we defined above, in preferential attacks, each node in the network is

attacked with higher probability if it has larger degree. Therefore, consider the costs to

attack for intruders, we focus on the following two preferential attack schemes:

• Interactive Preferential Attacks: one way to control the costs to attack is to attack
a node w.r.t. its degree and a new parameter β′. That is, a node of degree i is
attacked with probability 1− 1

iβ
′ ;

• Expected Preferential Attacks: another way to control the costs to attack is
based on the expected number of nodes c to attack. When the intruder decides
c , ranging between 0 and eαζ(β), a node of degree i is attacked with probability
pi = c

i
eαζ(β−1) since the expected number of failure nodes is equal to c , namely∑

i
eα

iβ
pi = c .

As one can see, in both these schemes, a node of higher degree, often referred to as

a “hub”, is more preferentially attacked, that is, it has higher probability to be attacked.

By denoting their corresponding residual graphs as G Ip and GEp , their total pairwise

connectivity are proven in Theorem 3.3 and Theorem 3.4 respectively.

3.5.1 Interactive Preferential Attacks
(
pi = 1− 1

iβ
′

)
Theorem 3.3. In a residual graph G Ip of G(α,β) after interactive preferential attacks,

• If β + β′ < 3.47875, the expected pairwise connectivity E(P) is Θ(n2);

63

• If β+β′ ≥ 3.47875, the pairwise connectivity P is a.s. at most 1
2
n
(
c(β)n

2
β log n − 1

)
.

where c(β) = 16/
[
ζ(β)

(
2− ζ(β−2)

ζ(β−1)

)]2
is a constant on any given β.

Theorem 3.3 can be proven in the same way as in Theorem 3.1 after showing the

expected degree in residual graph G Ip as in Lemma 20, which is based on the following

two lemmas.

Lemma 18. In graph G(α,β), the probability that a node v of degree i incident to another

node u of degree x is ix
eαζ(β−1) .

Proof. Consider a node v of degree i , in the matching of mini-nodes, at least one of i

mini-nodes for v connects to another one of x for node u of degree x . Thus, we have(
i
1

)(
x
1

)
f (N − 2)
f (N)

=
ix

N − 1
=
ix

N
+O(

1

N2
)
.
=

ix

eαζ(β − 1)

where f (n) = (n − 1)!! representing the number of perfect matchings for N nodes and

N = eαζ(β − 1) denotes the number of mini-nodes.

Lemma 19. For a node v of degree i , the expected number of non-failure neighbors

E(N Ip(i)) of v is i ζ(β+β
′−1)

ζ(β−1) .

Proof. According to Lemma 18, node v has probability ix
eαζ(β−1) to connect to node u of

degree x . Since node u of degree x has the non-failure probability 1

xβ
′ , then we have the

expected non-failure neighbor of v to be

E(N Ip(i))
.
=

∆∑
x=1

ix

eαζ(β − 1)
1

xβ′

eα

xβ

.
= i ζ(β+β

′−1)
ζ(β−1) Theproofiscomplete.

Lemma 20. The expected degree distribution of graph G Ip is

E(y pi)
.
=

eα(
i ζ(β−1)
ζ(β+β′−1)

)β+β′

where i ∈
{
ζ(β+β′−1)
ζ(β−1) , ... , ∆

ζ(β+β′−1)
ζ(β−1)

}
.

64

Proof. Consider the set of nodes with degree i in Gp, they are correspondent to the

nodes of degree x in the original graph G(α,β). Hence, the expected unattacked nodes in

this set is e
α

xβ
1

xβ
′ = eα

xβ+β
′ . According to Lemma 19, we know the relation between i and x

is i .= x ζ(β+β
′−1)

ζ(β−1) . Therefore, we have the expected number of nodes of degree i in G Ip to

be eα(
i ζ(β−1)
ζ(β+β′−1)

)β+β′ .

3.5.2 Expected Preferential Attacks
(
pi = c

i
eαζ(β−1)

)
Theorem 3.4. In a residual graph GEp of G(α,β) after expected preferential attacks,

• The pairwise connectivity P is a.s. Θ(n2)

if c < min
{
c

∣∣∣∣∑x
eα

xβ
(1− cx

eαζ(β−1))
(
x
(
1− cζ(β−2)

eαζ(β−1)2

))
n−c > 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n
3
2 log n

if c > max
{
c

∣∣∣∣(1− cζ(β−2)
eαζ(β−1)2

)
ζ(β−2)− cζ(β−3)

eαζ(β−1)

ζ(β−1)− cζ(β−2)
eαζ(β−1)

< 1

}
.

To prove Theorem 3.4, we again first show the expected degree distribution in GEp

as follows.

Lemma 21. For a node v of degree i , the expected number of non-failure neighbors

E(NEp (i)) of v is i
(
1− cζ(β−2)

eαζ(β−1)2

)
.

Proof. According to Lemma 18, the node v has probability ix
eαζ(β−1) to connect node u of

degree x . Since node u of degree x has the non-failure probability 1− c x
eαζ(β−1) , then we

have the expected non-failure neighbor of v to be

E(Np(i))
.
=

∆∑
x=1

ix

eαζ(β − 1)

(
1− cx

eαζ(β − 1)

)
eα

xβ
.
= i

(
1− cζ(β − 2)
eαζ(β − 1)2

)
The proof is complete.

Corollary 9. The expected degree distribution of graph GEp is

E(y pi)
.
=
eα

iβ

(
1− cζ(β − 2)
eαζ(β − 1)2

)β1− ci

(eαζ(β − 1))
(
1− cζ(β−2)

eαζ(β−1)2

)

65

where i ∈
{(
1− cζ(β−2)

eαζ(β−1)2

)
, ... , ∆

(
1− cζ(β−2)

eαζ(β−1)2

)}
.

Proof of Theorem 3.4:

Proof. In the proof, we first calculate the expected average degree yEp based on

Corollary 9 as

d
E

p

.
=

∑∆
x=1

eα

xβ

(
1− cx

eαζ(β−1)

)(
x
(
1− cζ(β−2)

eαζ(β−1)2

))
n − c

and second-order average degree d̃Ep as

d̃Ep
.
=

∑∆
x=1

eα

xβ

(
1− cx

eαζ(β−1)

)(
x
(
1− cζ(β−2)

eαζ(β−1)2

))2
∑∆
x=1

eα

xβ

(
1− cx

eαζ(β−1)

)(
x
(
1− cζ(β−2)

eαζ(β−1)2

))
.
=

(
1− cζ(β − 2)
eαζ(β − 1)2

)
ζ(β − 2)− cζ(β−3)

eαζ(β−1)

ζ(β − 1)− cζ(β−2)
eαζ(β−1)

According to Lemma 15 and Corollary 8, there exists one giant component if yEp > 1

and all components have size at most 1
2

√
n log n + 1 if ỹEp < 1, then the proof follows from

Lemma 16 directly.

3.5.3 Relations between β and Expected Attacked Nodes

In interactive preferential attacks, according to Theorem 3.3, a power-law networks

with exponential factor β will be lowly-connected if the intruder select a β′ such that

β + β′ ≥ 3.47875. Since a node of degree i is attacked with probability 1 − 1

iβ
′ in this

scheme, this node can survive with probability 1

iβ
′ . Therefore, we have the expected

number of survived nodes as

∑
i

eα

iβ
1

iβ′
.
= eαζ(β + β′)

that is, the expected percentage of attacked nodes can be obtained by calculating

1− ζ(β+β′)
ζ(β)

.

Fig. 3-3 reports the relation between β and expected attacked nodes under

iterative preferential attacks. We observed that the expected number of attacked nodes

66

��

��

���

���

���

���

���

�� ���� ���� ���	 ���
 �� ���� ����

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������

 �!"�#$����������%�&��$'�&����&����

'�&�#$����������%�&��$'�&����&����

Figure 3-3. Relation between β and Attacked Nodes under Iterative Preferential Attacks

decreases sharply with the increase of β. Clearly, smaller β leads to a more robust

power-law network.

��

��

���

���

���

���

���

�� ���� ���� ���	 ���
 �� ���� ����

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������

 �!"�#$����������%�&��$'�&����&����

'�&�#$����������%�&��$'�&����&����

Figure 3-4. Relation between β and Attacked Nodes under Expected Preferential
Attacks

In expected preferential attacks, again Fig. 3-4 reveals the smaller β the better.

According to Theorem 3.4, except of uncertain areas (shadow areas), we can see that

the percentage of attacked nodes (under the red line) reduces when β increases.

3.6 Degree-Centrality Attacks

As power-law networks is quite vulnerable under preferential attacks, their toleration

to the deterministic intentional attacks attracts more attentions. Also, one can also

67

question whether it is still true under deterministic intentional attacks that power-law

networks with smaller β can better maintain their functionalities. In this section, we

consider the degree-centrality attack, in which the intruders intentionally attack the

“hubs”, the set of nodes of highest degrees. When all nodes of degree larger than x0 are

attacked simultaneously, we have the following Theorem 3.5.

3.6.1 Robustness under Degree-Centrality Attacks

Theorem 3.5. In a residual graph Gc of G(α,β) after degree-centrality attacks,

• The pairwise connectivity P is a.s. Θ(n2)

if x0 > min

{
x0

∣∣∣∣∣ 1
ζ(β−1)

(∑x0
x=1

1

xβ−1

)2∑x0
x=1

1

xβ

> 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n
3
2 log n

if x0 < max
{
x0

∣∣∣ 1
ζ(β−1)

∑x0
x=1

1
xβ−2

< 1
}

.

To prove Theorem 3.5, we again first show the expected degree distribution in Gc as

follows.

Lemma 22. For a node v of degree i in original graph G(α,β), the expected number of

neighbors of degree larger than x0 is i
ζ(β−1)

∑∆
i=x0+1

1
iβ−1

.

Proof. According to Lemma 19, the probability that a node v of degree i incident to a

node u of degree x is ix
eαζ(β−1) . Therefore, we have the expected number of neighbors of

degree larger than x0 to be

E(Nc(i))
.
=

∆∑
x=x0+1

ix

eαζ(β − 1)
eα

xβ
=

i

ζ(β − 1)

∆∑
x=x0+1

1

xβ−1

Corollary 10. The expected degree sequence in Gc is

E(y ci)
.
=
eα

iβ

(
1

ζ(β − 1)

x0∑
x=1

1

xβ−1

)β

where i ∈
{

1
ζ(β−1)

∑x0
x=1

1
xβ−1
, ... , x0

ζ(β−1)
∑x0
x=1

1
xβ−1

}
.

68

Proof of Theorem 3.5:

Proof. With the expected average degree y c as

dc =

∑x0
x=1

eα

xβ
x
(

1
ζ(β−1)

∑x0
i=1

1
iβ−1

)
n −

∑∆
i=x0+1

eα

iβ

=
1

ζ(β − 1)

(∑x0
x=1

1
xβ−1

)2∑x0
x=1

1
xβ

and second-order average degree ỹc as

d̃c =

∑x0
x=1

eα

xβ

[
x
(

1
ζ(β−1)

∑x0
i=1

1
iβ−1

)]2
∑x0
x=1

eα

xβ
x
(

1
ζ(β−1)

∑x0
i=1

1
iβ−1

) =
1

ζ(β − 1)

x0∑
x=1

1

xβ−2

The rest of proof is the same as Theorem 3.4.

3.6.2 Relations between β and Attacked Nodes

Fig. 3-5 illustrates the relations between β and attacked nodes under degree-centrality

attacks based on Theorem 3.5. On the one hand, it is similar to expected preferential

attacks that the percentage of attacked nodes (under the red line) reduces when

β increases except of uncertain areas (shadow areas). On the other hand, under

degree-centrality attacks, the intruder only needs to attack roughly 8% less number

of nodes to lower down the pairwise connectivity of power-law networks than under

expected preferential attacks.

��

��

���

���

���

�� ���� ���� ���� ���	 �
 �
�� �
��

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

 �!"�#$����������%�&��$'&����&����

'�&�#$����������%�&��$'&����&����

Figure 3-5. Relation between β and Attacked Nodes under Degree-Centrality Attacks

69

3.7 Random Cascading Failures

More importantly, the failures will lead to a much more devastating consequence

especially when failures are cascaded, i.e., these failed nodes can cause the overload

and failure of their nearby elements in the system because of the load shifting.

Let us consider an example in Figure 3-6 illustrating a small portion of the power

grid, where nodes v1, v2, ... , v7 are generators, v8, v9, ... , v16 are transmitters and

v17, v18, v19 are customers. Each node has load equal to its degree and capacity equal

to twice its degree. As revealed in this figure, any successful corruptive attacks to nodes

v8 and v10 can affect the power supply from generators or transmitters instantly, while

customers are still able to utilize the electricity until the left electricity in demand centers

is used up. However, when failures are cascaded, all transmitters can fail sequentially

(gradual color changes), i.e., v8, v10 ⇒ v12 ⇒ v9, v15 ⇒ v11, v13 ⇒ v14, v16, leading to

no power supply to customers instantly. Therefore, in order to continuously maintain the

normal network functions, it is of great importance to assess the network vulnerability in

the present of cascading failures, beforehand.

In this section, taking into account cascading failures, we analyze the network

vulnerability via two main thrusts, complex network structure analysis and optimal

detection of most vulnerable nodes, based on the recently proposed effective metric, to-

tal pairwise connectivity [27, 77, 78]. By measuring the connected node-pairs in residual

networks (a pair of nodes are connected when there is a functional path between them),

the minimum of total pairwise connectivity can control the balance among disconnected

components and further ensure the nonexistence of giant components, leading to the

destruction of network functionality.

3.7.1 Cascading Failure Model

In this paper, we use one of the most well-accepted models proposed in [85], in

which each node u in the network has a threshold θu ∈ [0, 1], typically drawn from

some probability distribution. Starting with an initial set of failure nodes F0, called

70

V17

V18

V19V3 V6 V10 V13 V16

V2 V5

V15

V1 V4 V8 V11 V14

V12
V9V7

F
a

ilu
r
e

 N
o

d
e

s

Generators Transmitters Customers

Figure 3-6. Each node in this power grid has load equal to its degree, capacity equal to
twice its degree and each red arrow says the shifting of 2 unit load. The solid
red arrows stand for the direct failure caused by the cascades and the dotted
ones mean the load shifting to the neighbor which is not failed directly. The
overload and failure of v8 and v10 can only cause the disconnection from
generators and transmitters, yet the power can be still supplied to customers
from demand centers. However, when failure cascades, it leads to the
breakdown of all transmitters and the electricity to customers are affected
instantly.

vulnerable nodes, the dynamics of failure cascades unfold round by round as follows.

The cascading process is deterministically in discrete rounds: in round t, all nodes that

failed in round t − 1 remain failed, and another node v fails if the total number of its

failure neighbors is at least θu, i.e., |N(u) ∩ Ft−1| ≥ θudeg(u), in which Ft−1 is the set of

failure nodes before round t − 1.

In addition, this model is also exhibited as one of the two main cascading models

in the context of social science literature, which is referred to as Linear Threshold

Propagation model. More importantly, this model belongs to the category of most

contagion problems, such as models of failures in engineering systems, i.e., power grid

[75], the Internet [5], or models of epidemics [53] and so on.

In the literature, some of the works assume that the thresholds θu are given

as a part of the input. However, the thresholds are usually given as constant in

communication networks due to the fixed load of each node. On the other hand, they are

71

generally not available and non-trivial to infer in social networks [39]. Therefore, instead

of the random threshold, we use a simplified variation in which a node fails if a fraction θ

of its neighbors failed in the previous round.

3.7.2 Cascading Random Failures

In order to analyze the pairwise connectivity in the residual power-law graph, we

first provide the following theorem by extending from Theorem 3.6:

Theorem 3.6. Consider the residual graph G ′ with expected degree sequence d⃗ =

{d1, d2, ... , dn} (y⃗ = {y1, y2, ... , y∆′} represents the number of elements with value i in d⃗)

and maximum degree ∆′. Given the following conditions w.r.t. the bounds of first-order

degree summation

d1min(G
′) ≤

n∑
i=1

di = dn ≤ d1max(G ′) (3–4)

and the bounds of the second-order degree summation

d2min(G
′) ≤

n∑
i=1

d2i =

∆′∑
j=1

j2yj ≤ d2max(G ′) (3–5)

Then, we have the pairwise connectivity is a.s. at most 1
2
n
(
c∆2′ log n − 1

)
. where

c = 16

2− d
2
max(G

′)
d1
min
(G ′)

. Note that the bounds d1min(G
′) and d2max(G ′) are more important to assess

the pairwise connectivity when the residual network is fragmented.

Proof. Here we only show the different parts from the proof of Theorem 3.6. After

branching process method, we again focus on calculating E(Di), E(Bi) and E(Li)

respectively. Note that we will just focus on the different steps from [78] in this proof. Let

λ = 2− d2max(G
′)

d1min(G
′)

. We have,

E(Di) ≤
d2max(G

′)

d1min(G
′)
= 2− λ

Similar as in [78], we have E(Bi) ≥ 0 due to |N(u) ∩ Ei−1| ≥ 1. Then

E(Li) ≤ d0 − λ(i − 1)

72

is derive from the substitution of E(Di) and E(Bi) into Li − Li−1 = Di − Bi − 2, where the

initial node is assumed to have degree d0.

Since the maximum degree in the residual graph G ′ is ∆′, we have |Lj − Lj−1| ≤ ∆′.

According to Azuma′s Martingale Inequality [22],

Pr [|Li − E(Li)| > Ω] ≤ 2e
−Ω2

2ie∆
2′

where i = 16
λ2
∆2′ log n = c∆2′ log n and Ω = λ

2
i . Since E(Li) + Ω ≤ d0 − λ(i − 1) + λ

2
i < 0

for any d0, we have

Pr
[
T > 2e

−Ω2
2i∆2′
]
≤ 2
n2

Then, the probability that there is a non-failure node belonging to a connected

component of size larger than c∆2′ log n in graph G ′ is at most o(1) and the upper bound

pairwise connectivity in G ′ follows from Lemma 16 directly.

In this subsection, we focus on investigating the expected degree sequence of the

residual graph, along with its upper and lower bounds of first and second order degree

summation.

Lemma 23. When p > θ, the upper bound max{Prkd} of the probability Prkd that a node v

of degree k survives after d > 0 round cascades can be recursively computed using

(1− p)
(1
2
exp

{
− 2k

(
1− θ −

∆∑
i=1

Φi ·max{Prid−1}
)2})

where Φi = 1
iβ−1ζ(β−1) is the probability that one of a neighbor for an arbitrary node has a

node of degree i [78], and Pri0 = 1 − p for any degree i since each node randomly fails

with the same probability p at the beginning.

73

Proof. Consider a node v of degree k and the probability Φi that v has a neighbor of

degree i . We have

Pr[v has xi neighbors of degree i] =
k!∏∆
i=1 xi !

∆∏
i=1

Φi
xi

For a neighbor of v with degree i , it could either fail in round j with probability pij or

survive after d rounds with probability qi(d−1) (= Prid−1), that is,
∑d−1
j=0 pij + qi(d−1) = 1. Let

fij be the neighbors of degree i failed in round j and si(d−1) be the neighbors of degree

i survived after d round cascades. Note that the probabilities pij and qi(d−1) can be

derived from the power-law random network model only based on the degree i of a node

in a particular round j , along with the initial failure probability p of each node. Therefore,

we have

Pr[v survives at round 0 ∩

fij neighbors of degree i fail in round j ∩

si(d−1) neighbors of degree i survive after round d − 1]

=
∑

xi neighbors of degree i
Pr[v survives at round 0 ∩

fij neighbors out of xi of degree i fail in round j ∩

si(d−1) neighbors out of xi of degree i survive after

round d − 1 | v has xi neighbors of degree i]

·Pr[v has xi neighbors of degree i]

= (1− p)
∆∏
i=1

(xi !∏d−1
j=1 fij !si(d−1)

d−1∏
j=0

p
fij
ij q
si(d−1)
i(d−1)

)
· k!∏

i xi !

∆∏
i=1

Φi
xi

=
(1− p)k!∏

i

∏
j fij !

∏
i si(d−1)

∆∏
i=1

d−1∏
j=0

(Φipij)
fij

∆∏
i=1

(Φiqi(d−1))
si(d−1)

where the third step holds since the probability is equal to 0 when there exists some

xi ̸=
∑d−1
j=0 fij + si(d−1). Also, it is clear to see that

∑∆
i=1

∑d−1
j=0 Φipij +

∑∆
i=1Φiqi(d−1) = 1.

74

According to the cascading model, node v survives after d hop cascades if and only if

less than θ fraction of its neighbors fail after d − 1 round cascades. Therefore, we have

Prkd =
∑

∑∆
i=1

∑d−1
j=0 fij≤θk

(1− p)k!∏
i

∏
j fij !

∏
i si(d−1)

∆∏
i=1

d−1∏
j=0

(Φipij)
fij

∆∏
i=1

(Φiqi(d−1))
si(d−1)

= (1− p)
∑

∑∆
i=1

∑d−1
j=0 fij≤θk

(
k∑∆

i=1

∑d−1
j=0 fij

)

(

∆∑
i=1

d−1∑
j=0

Φipij)
∑
i

∑
j fij (1−

∆∑
i=1

d−1∑
j=0

Φipij)
k−

∑
i

∑
j fij

≤ (1− p)
(1
2
exp

{
− 2k

(∆∑
i=1

d−1∑
j=0

Φipij − θ
)2})

= (1− p)
(1
2
exp

{
− 2k

(
1−

∆∑
i=1

Φiqi(d−1) − θ
)2})

≤ 1
2
(1− p) exp

{
− 2k

(
1− θ −

∆∑
i=1

Φi ·max{Prid−1}
)2}

where the third step follows from the Hoeffding′s inequality [76] and the last step follows

from max{Prid−1} < 1− p since the probability of the survival of a node has to be smaller

than the probability it fails without cascading failures.

Lemma 24. When p > θ, the lower bound min{Prkd} of the probability Prkd that a node v

of degree k survives after d > 0 round cascades can be recursively computed using

(1− p)
(
k

θk

)(
1−

∆∑
i=1

Φi ·min{Prid−1}
)θk(∆∑

i=1

Φi ·min{Prid−1}
)(1−θ)k

where Φi is the probability that a node of degree k has a neighbor of degree i , and

Pri0 = 1 − p for any degree i since each node randomly fails with the same probability p

at the beginning.

75

Proof. According to the proof of Lemma 23, we know that

Prkd = (1− p)
∑

∑∆
i=1

∑d−1
j=0 fij≤θk

(
k∑∆

i=1

∑d−1
j=0 fij

)

(

∆∑
i=1

d−1∑
j=0

Φipij)
∑
i

∑
j fij (1−

∆∑
i=1

d−1∑
j=0

Φipij)
k−

∑
i

∑
j fij

≥ (1− p)
(
k

θk

)
(1−

∆∑
i=1

Φiqi(d−1))
θk(

∆∑
i=1

Φiqi(d−1))
(1−θ)k

Next, consider the function f (x) = (1 − x)yxk−y for some 0 ≤ x ≤ 1 and 0 ≤ y ≤ k .

We have
df (x)

dx
= (1− x)y−1xk−y−1(k − kx − y)

It is easy to see that df (x)
dx

> 0 iff k − kx − y > 0. That is, x < 1 − θ when y = θk . Since

minPrid−1 < qij < 1− p, we have qij < 1− θ for any 0 ≤ j ≤ d − 1 when p > θ.

Lemma 25. The expected number of node of degree k ′ = k
∑∆
i=1ΦiPrid in residual graph

can be estimated as e
α

kβ
Prkd where the bounds of Prkd is determined by Lemma 23 and 24.

Proof. Consider a node of degree k in original graph G . After cascading failures, its

degree can be estimated based on the survival of its neighbors. Particularly, for each

neighbor, it has probability Φi to connect to a node of degree i . Moreover, a node of i in

G will survive after d-round cascading failures with probability Prid . Therefore, for a node

of degree k in G , its degree in the residual graph can be estimated as k
∑∆
i=1ΦiPrid . On

the other hand, each node of degree k in G has probability Prkd to survive after cascades

and there are eα

kβ
nodes of degree k in G . Therefore, the proof is complete.

Using the lemma 25, we can obtain the following Theorem:

Theorem 3.7. The expected first-order and second-order degree summation are

eα

ζ(β − 1)

∆∑
i=1

∆∑
k=1

1

kβ−1iβ−1
PridPrkd

76

and
eα

ζ(β − 1)2
∆∑
i=1

∆∑
j=1

∆∑
k=1

1

kβ−2iβ−1jβ−1
PridPrjdPrkd

where the bounds are determined by min{Prkd} and max{Prkd}.

Proof. According to the definition of first-order degree summation, we have

∆∑
i=1

k ′
eα

kβ
Prkd

=

∆∑
i=1

(
k

∆∑
i=1

ΦiPrid
)eα
kβ

Prkd

= eα
∆∑
i=1

∆∑
i=1

1

iβ−1ζ(β − 1)
1

kβ−1
PridPrkd

=
eα

ζ(β − 1)

∆∑
i=1

∆∑
k=1

1

kβ−1iβ−1
PridPrkd

Again, according to the definition of second-order degree summation, we have

∆∑
i=1

k ′
eα

kβ
Prkd

=

∆∑
i=1

(
k

∆∑
i=1

ΦiPrid
)2 eα
kβ

Prkd

=
eα

ζ(β − 1)2
∆∑
i=1

∆∑
j=1

∆∑
k=1

1

kβ−2iβ−1jβ−1
PridPrjdPrkd

3.7.3 Numerical Analysis

Here we show that our theoretical analysis consists well with the simulation result.

Particularly, we generate power-law networks using igraph package [26] and test on

the synthetic networks with different parameters, exponential factor β and network size

n. Due to the similar results using distinct parameters, we only provide the result with

β = 1.5 and n = 250 as in Fig. 3-7. As revealed in Fig. 3-7, apart from the surprising

agreement between our analysis and simulation, we also find that power-law networks

77

��

��

��

��

��

���

�
	

��
�

������
�������������

�������� ��!!���������"#���$
%�&'(������)��'(�

"#���$�)��'(�

��

��

��

��

��

���
�
	

��
�

������
�������������

��

��

��

��

��

���

�*+ �*� �*, �*� �*- �*� �*.

�
	

��
�

/��('������0�0�(��$��

+�����
������������+

Figure 3-7. Numerical Analysis in Power-Law Networks (β = 1.5, n = 250). We plot the
three cascading hops and find that our analysis (pink plots) approximates
the simulation of the total pairwise connectivity (PWC) after cascading
failures surprisingly well, in both cases that power-law networks are a.s.
unaffected (PWC∝ n2) and a.s. fragmented.

are no longer robust under random failures when cascading failures occur. For example,

when each node is attacked with probability only 0.4, the network is a.s. fragmented only

after 1-hop propagation. This transition happens only when the probability equal to 0.2 if

failures can cascade 2 hops and almost vanishes when allowing more hop cascades.

3.8 Related Works

There are a great number of studies regarding the tolerance of real-world networks

against failures and attacks using different metrics. Edge vulnerability in metabolic

networks was studied by Kaiser et al. with respect to the average shortest path and

the clustering coefficient [50]. For the sake of power grid networks, Albert et al. [3]

investigated their vulnerability by measuring the loss of connectivity under various

threats, including random, cascading, load-based and degree-based nodal failures. The

disruption of vital interstate systems was assessed by Matisziw et al. [63] according

to the available number of compromised s − t flows. Cohen et al. [23] showed the

resilience of Internet to the random breakdown of the nodes based on percolation

theory. In [72], Satorras et al. also revealed that the random uniform immunization of

78

individuals cannot lead to the eradication of communications in complex social networks

using the reduced prevalence rate. Doyle et al. [30] and Sydney et al. [81], using a

novel metric ELASTICITY, explored that Internet topologies are less affected by both

random and targeted attacks than the power-law networks. In general, the robustness

of other complex networks was studied in [46, 47] using algebraic connectivity, i.e., the

second-smallest eigenvalue of the Laplacian matrix of a graph. Recently, from a different

perspective, Alderson et al. [7] focused on the role of organization and design in terms

of the complexity in highly organized technological and biological systems.

More generally, Albert et al. [5] first compared the robustness of complex systems

with the power-law and exponential properties. By measuring the diameters, the relative

size of the largest cluster and the average size of the isolated clusters, the power-law

networks are empirically observed to tolerate failures to a surprising degree but their

survivability decreases rapidly under attacks after comparing them with exponential

networks. Later on, Holme et al. [43] further investigated the degree of harms to

power-law networks under different strategies of attacks. Unfortunately, all these

observations are derived from experiments and lack their theoretical foundations.

79

CHAPTER 4
OPTIMIZATION OF POWER-LAW NETWORKS

In this chapter, we investigate the tradeoff impact of maintenance costs and

robustness guarantee on the power-law networks. In particular, we focus on the

power-law networks with β < 2.9, which have been discovered to tolerate random

failures to an extreme high degree. In addition, since Fig. 3-3, 3-4 and 3-5 already

revealed that power-law networks can tolerate preferential attacks if they can tolerate

degree-centrality attacks when β < 2.9, we focus on the guarantee of their functionality

under degree-centrality attacks. We study the practical communication networks and

social networks respectively to explore the underlying reasons of their real-world

network topologies.

On the other hand, we show the NP-hardness to detect these critical elements in

power-law networks, along with two algorithms in two different cases: element failures

and cascading failures. The effectiveness of our algorithms are evaluated on both

synthetic power-law networks and real-world networks.

4.1 Design Optimization of Power-law Networks

The above vulnerability assessments give us a belief that power-law networks are

more robust when β is smaller. However, a majority of real-world networks usually have

their exponential factor β ranging from 2 to 2.5 rather than some small β approaching 1

or even less. The questions are intuitively raised: Is it better if real-world networks are

denser such that they can be more robust? What causes them to be sparser than our

expectation? Does there exist some potential optimization factors?

To address these questions, in this section, we investigate the tradeoff impact of

maintenance costs and robustness guarantee on the power-law networks. In particular,

we focus on the power-law networks with β < 2.9, which have been discovered to

tolerate random failures to an extreme high degree. In addition, since Fig. 3-3, 3-4 and

3-5 already revealed that power-law networks can tolerate preferential attacks if they

80

can tolerate degree-centrality attacks when β < 2.9, we focus on the guarantee of their

functionality under degree-centrality attacks. We study the practical communication

networks and social networks respectively to explore the underlying reasons of their

real-world network topologies.

4.1.1 Communication Networks

In the design of communication networks, such as the Internet, telecommunication

networks and so on, we are required not only to guarantee their functionality but reduce

the maintenance costs as well. Among various network performance metric, i.e., delay,

packet loss, throughput, etc., the guarantee of its connectivity is of the high priority. That

is, a real-world network only need sufficient number of links to guarantee its functionality,

and its other performance metric can be guaranteed by adjusting its capacity planning

[59]. In particular, we consider the costs including the link costs and the protection costs

for critical nodes. Since the nodes with degree and betweenness centrality are closely

correlated in non-fractal power-law networks [56], here we consider the critical nodes to

be degree-centrality nodes.

To formulate the optimization function for power-law networks in communication

networks, we first prove the following Lemma 26 by considering the worst case with

respect to the robustness of power-law networks. That is, as mentioned above, after

protecting the degree-centrality nodes, power-law networks a.s. remains highly-connected

(its total pairwise connectivity is a.s. Θ(n2)) even though all other nodes are failed.

Lemma 26. Let Gcp be the residual graph of G(α,β) only consisting of the protected

degree-centrality nodes (the nodes of degree larger than x0), we have

• The pairwise connectivity P is a.s. Θ(n2)

if x0 < max

{
x0

∣∣∣∣∣ 1
ζ(β−1)

(∑∆
x=x0+1

1

xβ−1

)2
∑∆
x=x0+1

1

xβ

> 1

}
;

• The pairwise connectivity P is a.s. at most 1
4
n
3
2 log n

if x0 > min
{
x0

∣∣∣ 1
ζ(β−1)

∑∆
x=x0+1

1
xβ−2

< 1
}

.

81

Proof. Consider that we protect only all nodes of degree larger than x0 and all other

nodes are failed. Similar as in Corollary 10, the expected degree sequence can be

written as

E(y cpi)
.
=
eα

iβ

(
1

ζ(β − 1)

∆∑
x=x0+1

1

xβ−1

)β

The rest of proof is the same as Theorem 3.4.

In order to guarantee the functionality of a power-law network, we take the above

Lemma 26 as the condition. In the meanwhile, we aim to minimize the maintenance

costs, which include the link costs and critical node protection costs. In detail, we

consider the following cost functions:

• Link Costs: Consider a link (u, v) in G(α,β), its link cost is heavily dependent
on the number of messages it transmits according to [62]. Another crucial
factor for the link cost is its capacity flow [79]. Since the nodes with degree and
betweenness centrality are closely correlated in non-fractal power-law networks
[56], we consider the link cost proportional to the average of the degrees of its two
endpoints.

• Critical Node Protection Costs: In terms of the critical nodes in G(α,β), apart from
their degrees, their protection costs are also closely related with the network
density. According to [79], the costs will rise with the increase of density since it
enlarges the demand of message exchanges. In addition, as investigated in [62],
the chain reaction leads to the roughly exponential increase of costs, we consider
the cost γ(x) to protect a node of degree x as a ∗ xb/β for some constant a and b.

Therefore, we can confidently formulate the following Mixed Linear Programming (MIP),

with two variables x0 and β, as

min 1
2

∑∆
x=1

eα

xβ
x +

∑∆
x=x0+1

eα

xβ
γ(x)

s.t. 1
ζ(β−1)

(∑∆
x=x0+1

1

xβ−1

)2
∑∆
x=x0+1

1

xβ

> 1

x0 ∈ Z+, x0 ≤ ∆

β > 0

(4–1)

Note that we omit the proportional constant of link cost since it does not affect the

optimization of total maintenance costs.

82

4.1.2 Social Networks

As we mentioned at the beginning of this paper, one of the main threats in social

networks is the malware propagations [87]. Thus, apart from the factors in [11], the

containments of these malicious spreading become another crucial factor of the

sparsification of social networks. In other words, when an individual is infected, we

want to minimize the expected number of total infected users, which can be realized by

immunizing critical users beforehand. Therefore, the minimization of immunization costs

becomes an urgent need.

Thus, in order to formulate the optimization function for power-law networks in

social networks, we first investigate the upper bound of expected size of a connected

component after protecting the critical users, which are again referred to as the

degree-centrality nodes. That is, we focus on the size of connected components on

residual network after removing such immunized users. By defining the residual graph

Gs to be the residual power-law graph G [V \ S] after immunizing individuals in S , the

following Theorem 4.1 gives the bound of expected size of a connected component on

Gs .

Theorem 4.1. In the residual graph Gs of G(α,β), the expected size of a connect-

ed component c̄ is a.s. upper bounded by O
(
n
1
4

)
when d̃s < 1, that is, x0 <

max
{
x0

∣∣∣ 1
ζ(β−1)

∑x0
x=1

1
xβ−2

< 1
}

.

Proof. Consider the connected components c1, c2, ... , ck in Gs , their expected size c̄

can be written as 1
k

∑
1≤i≤k ci . According to [21], all connected components a.s. have

volume at most C ′√n for some constant C ′ when d̃ < 1. Therefore, the number of

connected components is at least C
√
n where C = 1/C ′. Supposing that c̄ ≥ γn

1
4 for

some constant γ with probability ρ, the probability that any random pair of nodes are in

the same component can be lower bounded by

1

n2d
2

s

ρ
∑
1≤i≤k

c2i ≥
1

n2d
2

s

ρc̄2k ≥ 1

n2d
2

s

ρCγ2n

83

On the other hand, according to F. Chung et al. [21], we know that the probability for any

random pair of nodes belonging to the same component is upper bounded by

d̃2s

(1− d̃s)nd s

Combining the above two bounds, we know

1

n2d
2

s

ρCγ2n ≤ d̃2s

(1− d̃s)nd s

which implies that

ρ ≤ d s d̃
2
s

Cγ2(1− d̃s)

That is, by choosing C to be log n, with probability at least 1 − o(1), the expected size c̄

of connected components is a.s. at most O
(
n
1
4

)
.

Again, consider the above lemma as the condition and the same protection cost

function of critical users γ(x) = a ∗ xb/β, we formulate the following mixed linear

programming, with two variables x0 and β, in order to make sure that the expected size

of connected components in the residual power-law networks is no larger than O
(
n1/4

)
.

min
∑∆
x=x0+1

eα

xβ
γ(x)

s.t. 1
ζ(β−1)

∑x0
x=1

1
xβ−2

< 1

x0 ∈ Z+, x0 ≤ ∆

β > 0

(4–2)

4.1.3 Optimal Range of Exponential Factor β

For the sake of communication networks, consider the practical range of protection

costs from 0 to x9/β for a node of degree x (that is b ∈ [0, 3]), Fig. 4-1 reveals the

relation between maintenance costs and optimal β according to MIP (4–1). As one

can see, the optimal β is from 1.8 to 2.5 no matter how large the constant b is, the

exponential factor β is no less than 1.8. (Note that the curve is invariant for distinct

84

network sizes since the effect of light-tailed elements in riemann zeta function can be

neglected.)

����

����

��

����

����

����

����

���	

�
 �� �� �� �� �	 �� �� �� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������

Figure 4-1. Optimal Robust Communication Networks

Fig. 4-2 reports that the optimal range of β is from 2.3 to 2.4 in social networks

according to MIP (4–2). We observe that the increase of b does not really affect the

range of β and the curve also remains invariant with respect to different network sizes.

����

�����

�����

�����

�����

�����

�� �� �� �� �� �� �	 �
 �� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������

Figure 4-2. Optimal Robust Social Networks

In summary, the analysis on both communication networks and social networks

give us a reasonable explanation of the topology in real-world power-law networks, that

is, the best range of the exponential factor β is [1.8, 2.5]. In other cases, the network

85

maintenance cost either becomes very expensive when β < 1.8, or the network

robustness is unpredictable when β > 2.5 due to its dependence on the specific

attacking strategy.

4.2 Critical Elements Detection in Power-law Networks

In this section, we study two practical optimization problems namely Critical Link

and Node Disruptor (CLD and CND), to assess the network vulnerability when a given

number of network elements (links or nodes) fail undesirably. We refer to these elements

as critical links and nodes hereafter.

Definition 23 (Critical Link Disruptor). Given an integer k and a weighted undirected

graph G = (V ,E ,W), the problem asks for a weight-bounded subset of critical links

S ⊂ E , i.e.
∑
(i ,j)∈S wij ≤ k , whose removal minimizes the total pairwise connectivity in

G [E \ S].

Definition 24 (Critical Node Disruptor). Given an integer k and a weighted undirected

graph G = (V ,E ,W), the problem asks for a weight-bounded subset of critical nodes

S ⊂ V , i.e.
∑
vi∈S w

i ≤ k , whose removal minimizes the total pairwise connectivity in

G [V \ S].

Moreover, taking into account the cascading failures, we define another problem

focusing on the detection of critical nodes, called Cascading Vulnerability Node Detec-

tion (CVND) problem, as follows:

Definition 25 (Cascading Critical Node Disruptor). Given two integers k , d , a fractional

number θ ∈ (0, 1) and an undirected graph G = (V ,E). Let P(S) be total pairwise

connectivity of residual graph G after the d-hop cascading failures caused by the initial

removal of the set of nodes S ∈ V . The CVND problem asks for k most vulnerable

nodes such that P(S) is minimized.

4.2.1 Hardness of Detecting Critical Links and Nodes

In this subsection, we show that CLD and CND problems are NP-hard, which

denies the existence of a prompt optimal solution.

86

Lemma 27 (Ferrante et al. [35]). Let G1 = (V1,E1) be a simple graph with n nodes and

β ≥ 1. For α ≥ max{4β, β log n + log(n + 1)}, we can construct a power-law graph

G = G1 ∪ G2 with exponential factor β and the number of nodes eαζ(β) by constructing a

bipartite G2 as a maximal component in G .

Lemma 28. The clique separator (CS) problem (which is defined as given an undi-

rected graph G = (V ,E), find a minimum set of links S ⊆ E such that the connected

components of G [E \ S] are cliques, each has size at least 3) is NP-hard.

Theorem 4.2. The CLD problem is NP-hard on power-law graphs even if all nodes have

unit weights.

Proof. Consider the decision version of CLD that asks whether an undirected graph

G = (V ,E) contains a set of links S ⊂ E of size k such that the pairwise connectivity

in residual graph G [E \ S] is at most c for a given positive integer c . To prove that CLD

on power-law graphs is in NP-hard, we reduce the clique separator (CS) to it. After

constructing a power-law graph G ′ = G ∪ Gb where the bipartite graph Gb = (Ub,Vb;Eb)

is a maximal component in G ′ according to Lemma 27, we show that there is a CS of

size k in G iff G ′ has a CLD S ′ of size k ′ such that the pairwise connectivity of G ′[E ′ \ S ′]

is at most c , where k ′ = k + |Eb| − |Mb| and c = |E | − k + |Mb|. Note that Mb is the links

in the maximum matching of Gb.

First, suppose S ⊆ V is a clique separator of G with |S | = k . We have the pairwise

connectivity in G [E \S] to be |E |−k since all components in this graph are cliques. Since

the maximum matching on Gb can be found in polynomial time using Hopcroft-Karp

algorithm [44], the pairwise connectivity on G ′ is c after removing additional |Eb| − |Mb|.

Conversely, suppose that S ′ ⊂ V ′ is a CLD of G ′ with size k ′. Note that S ′ = A ∪ Sb,

where A and Sb are CLD on G and Gb respectively. We show that the number of critical

links Sb in Gb is |Eb| − |Mb|. If |Sb| < |Eb| − |Mb|, the pairwise connectivity of Gb increases

by at least two when adding one more link onto the maximum matching. On the other

hand, the removal of l links on G can reduce the pairwise connectivity at most l after

87

removing the CS k . If |Sb| > |Eb| − |Mb|, the pairwise connectivity of Gb reduce by one

when removing one more link from the maximum matching. Meanwhile, a link added

onto the residual graph of G will increase the pairwise connectivity at least one if it

connects two independent nodes and at least 3 if it has one endpoint belonging to some

component in the residual graph of G . Thus, we have Sb = |Eb| − |Mb| and it is easy to

verify that A is a CS of G .

Theorem 4.3. The CND problem is NP-hard on power-law graphs even if all nodes have

unit weights.

Proof. Consider the decision of CND that asks whether a graph G = (V ,E) contains a

set of nodes S ⊂ V of size k such that the pairwise connectivity in G [V \ S] is at most c

for a given positive integer c . To prove that CND on power-law graphs is in NP-hard, we

reduce the vertex cover (VC) to it. Let an undirected graph G = (V ,E) where |V | = n

and a positive integer k ≤ n be any instance of VC. We construct a power-law graph

G ′ = (V ′,E ′) as follows. First, for each node vi ∈ V on graph G , we add one additional

node ui onto it, which we call G1 and V1 = V ∪ U where U = {ui}. Then according to

Lemma 27, a power-law graph G ′ = (V ′,E ′) can be constructed by embedding G1 and a

bipartite graph G2 = (V 12 ,V 22 ;E2) where V 12 ,V 22 are two sets of disjoint nodes in G2 and

α ≥ max{4β, β log(2n) + log(2n + 1)} with some specific β. Note that V 12 and V 22 are

marked gray and white separately as shown in Fig. 4-3. We show that there is a VC of

size k in G iff G ′ has a CND S ′ of size k ′ such that the pairwise connectivity of G ′[V ′ \ S ′]

is at most c , where k ′ = k +min{|V 12 |, |V 22 |} and c = n − k .

First, suppose S ∈ V is a vertex cover of G with |S | = k . Therefore, G has a vertex

cover S of size k iff G ∪ G2 has a vertex cover S ′ of size k + min{|V 12 |, |V 22 |} since VC

is polynomially solvable in any bipartite graphs according to Kõnig′s Theorem [49].

Then, after removing S ′ from G ′, we only have all disjoint links (vi , ui) left where vi ̸∈ S .

Therefore, the pairwise connectivity on power-law graph G ′ is n − k , which is equal to c .

88

i

V i

V

i

V

i

V

i

G

V

i

A An instance

i

i

V i V i

V

iV

i

V

iV

i

V

iV

i

1
G

V

iV

i

…
...

1

2
V

2

2
V

2
G

B Reduced graph G ′ = G1 ∪ G2

Figure 4-3. An example of CND reduction on PLGs. For simplicity, we just draw the
nodes in G and its newly added nodes and links.

Conversely, suppose that S ′ ⊂ V ′ with |S ′| = k ′ is a CND of G ′, that is, the total

pairwise connectivity of G ′[V ′ \ S ′] is at most c . First, if ui ∈ S ′, it is easy to verify

that replacing ui with any vi will further decrease the pairwise connectivity. Since

|S ′| = k ′ = k + min{|V 12 |, |V 22 |}, we can easily modify S ′ to be a vertex cover of G ∪ G2,

where the total pairwise connectivity on G ′ is at most c = n − k . Thus S ′ ∩ V is a VC of

G .

4.2.2 HILPR Approach

Apart from the above theoretical hardness results for CLD and CND, these two

problems are usually even harder to be approximated. The pairwise connectivity can

either remain O(n2) for CLD in dense networks even when k is large, or reach 0 for

CND when k is larger than the size of vertex cover. In this section, we present our

solution, a Hybrid Iterative Linear Programming Rounding (HILPR) algorithm to both

CLD and CND problems. In a big picture, HILPR formulates CLD and CND under

Integer Linear Programming (ILP) formulations, and then solves them using an iterative

rounding technique. In addition, HILPR also takes into account the local search and

89

constraint pruning techniques in order to further improve its efficiency and reduce its

time complexity.

4.2.2.1 Integer linear programming formulation

Critical Link Disruptor

For each pair of nodes i , j ∈ V , we define an indicator variable uij as:

uij =

1, if i and j are connected

0, otherwise

Then we have the following ILP:

min
∑
i ,j∈V

uij

s.t. uij + ujh − uhi ≤ 1 ∀i , j , h ∈ V∑
(i ,j)∈E

wij(1− uij) ≤ k

uij ∈ {0, 1}

(4–3)

where the objective is to minimize the total pairwise connectivity. The first constraint

imposes the triangular connectivity. That is, if node i and j are connected, node j and

h are connected, node i and h have to be connected. The second constraint means

that the total weight of all deleted links has to be at most k . We note that for an edge

(i , j) ∈ E , if uij = 0 in the ILP solution, then that link (i , j) is a critical link.

Critical Node Disruptor

For CND, we simply extend the above IP formulation for CLD in (4–3) as

min
∑
i ,j∈V

uij

s.t. vi + vj + uij ≥ 1 ∀(i , j) ∈ E

uij + ujh − uhi ≤ 1 ∀i , j , h ∈ V∑
i∈V

w ivi ≤ k

vi ∈ {0, 1}, uij ∈ {0, 1}

(4–4)

90

where vi is further defined as

vi =

1, if node i is deleted (i.e., critical nodes)

0, otherwise

The first additional constraint guarantees that at least one endpoint of a link has

to be deleted if its two endpoints are disconnected in the optimal solution. Other

constraints are carried out as CLD. We further constrain k in CND to satisfy Lemma

29 for unweighted graphs to avoid the zero pairwise connectivity, that is, all nodes in

network are independent.

Lemma 29. For an unweighted graph G , the optimal pairwise connectivity of CND is

larger than 0 if k < |E |/∆, where ∆ denotes the maximum degree in G .

Proof. We prove this using the contradiction method. Assume the optimal pairwise

connectivity is 0, that is
∑
i ,j∈V uij = 0, we have uij = 0 for any single link (i , j).

Therefore, vi + vj ≥ 1 according to the first constraint in LP (4–5). Hence we have∑
i∈V divi ≥ |E | by adding this up for all links. Note that we assumed k < |E |/∆, so∑
i∈V divi ≤ ∆

∑
i∈V vi ≤ k∆ < |E |, which draws a contradiction.

4.2.2.2 Hybrid iterative lp rounding algorithm

The basic idea of our HILPR algorithm consists of three main steps: (1) Relaxing

the integral constraints of the above ILP to obtain the corresponding LP; (2) Iteratively

solving the LP by replacing k in it with some experimental parameter γ < k and rounding

the corresponding fractional solutions of which have weights at most γ to integers; and

(3) Performing the local search to further optimize the solutions. The detailed description

is shown in Algorithm 7.

Specifically, in each iteration, we solve the LP after setting k = γ. Let u∗ij and v ∗i

be the optimal (fractional) solutions after solving the LP for the CLD and CND problems

respectively. In the CLD problem, we round X smallest variables u∗ij to 0 such that∑
uij∈X wij ≤ γ. Likewise, we round the Y largest variables v ∗i into 1 for the CND problem

91

such that
∑
vi∈Y w

i ≤ γ. In the next iteration, the graph will first be updated according

to the previous rounding results, i.e., the identified critical links or nodes will be removed

from the graph. Then LP will be reformulated according the new residual graph. The

algorithm terminates when the total weight of all identified critical links (or nodes)

reaches to k .

Algorithm 7: HILPR for a given γ
Input : Graph G = (V ,E), an integer k , γ
Output: The set of critical links/nodes S

1 S ← ∅;
2 // Iterative LP Rounding

3 while k > 0 do
4 if k < γ then
5 γ = k ;
6 end
7 else
8 Use Constraint Pruning to solve the LP formulation with γ;
9 k ← k − γ;

10 end
11 S ′ ← X links with smallest u∗ij such that

∑
uij∈X wij ≤ γ (in case of CND, S ′ ← Y

nodes with largest v ∗i such that
∑
vi∈Y w

i ≤ γ);
12 S ← S ∪ S ′;
13 G ← G [E \ S ′];
14 end
15 // Local Search

16 S∗ ← S ;
17 foreach element e ∈ S do
18 Swapping(e) (Algorithm 8);
19 end
20 S ← S∗;
21 return S ;

In the end, the HILPR algorithm further deploys a meta-heuristic approach [38] to

enhance the solution S obtained by the iterative rounding step mentioned above. The

detail of this local search is shown in the last part of Algorithm 7. Take a CLD as an

example. For each link e in the solution S , we do the local swapping between e and

each e ′ ∈ N(e) to obtain the new solution S ′ = S ∪ {e ′} \ {e}. Let f (G ,S) be the pairwise

92

connectivity function of G [E \ S]. If f (G ,S ′) < f (G ,S), we replace e by e ′ in the solution,

set S to be S ′ and recursively do the local search on e ′. The recursive procedure stops

until no more improvement can be achieved by the local search, i.e., f (G ,S ′) ≥ f (G ,S).

The whole algorithm stops until all links in S are visited. Similarly, the local search on

CND can be achieved by recursively checking the neighbor nodes.

Algorithm 8: Swapping(e)
1 S∗ ← S∗ \ {e};
2 if ∃e ′ ∈ N(e) such that f (G ,S ′) < f (G ,S) where S ′ ← S \ {e} ∪ {e ′} then
3 S∗ ← S ′;
4 Swapping(e ′);
5 end

We note that the LP formula of CLD and CND each has O(n3) constraints owing to

the triangle inequality constraints. To improve the running time of our algorithm during

solving the LP, we further propose the constraint pruning technique to eliminate the

inactive constraints according to the following lemma. As a result, the number of active

constraints on triangle inequality in equation (4–3) and (4–5) can be reduced to O(n2)

according to the constraint pruning technique.
Clique

Edge Set

i

j

k

h

Figure 4-4. Triangle inequality constraints

Consider a four-tuple triangle inequality (i , j , k), (i , j , h), (i , k , h) and (j , k , h), all

constraints are satisfied at the beginning. That is, as shown in Fig. 4-4, uij + ujh − uhi ≤ 1

and ujk + uhk − ujh ≤ 1 for the tuple (i , j , h) and (j , k , h) respectively. In the case that

the triangle inequality of the tuple (i , j , k) is tight, shown as shadow in Fig. 4-4, that is,

93

uij + ujk − uik = 1, we have

uhi ≥ uij + ujh − 1 ≥ uij + ujk + ukh − 2 = uik + ukh − 1

Thus, the triangle inequality of the tuple (i , k , h) is satisfied, shown as bold in Fig. 4-4.

Once the triangle inequality of the tuple (i , j , k) is tight, the triangle inequality of the

tuple (i , k , h) will be satisfied for all nodes h. Since the number of triangle inequality

constraints is 3
(
n
3

)
= O(n3), the number of active constraints will be O(n3)/n = O(n2)

after pruning process.

4.2.2.3 Performance evaluation

Performance of the HILRP Algorithm

The three networks we use to evaluate the performance of our proposed HILPR

algorithm are described as follows:

1. The real terrorist network compiled by Krebs [57] with 62 nodes and 153 links,
which reflects the relationship between the terrorists involved in the terrorism
attacks of Sep. 11, 2001. This experiment attempts to evaluate the performance of
HILPR on a real-world social network. In order to breakdown the terrorist network,
we can capture the individuals corresponding to the critical nodes identified by
HILPR.

2. Waxman network topology, a widely-accepted Internet AS topological model, is
generated by the well-known BRITE [64].

3. Power-law network topology, generated by Barabási graph generator [1], has been
discovered as one of the most remarkable properties in many large-scale networks
such as the Internet and the social networks.

To keep the similar density as the real terrorist network and also show the comparison

with optimal solutions, we use the instance with 70 nodes and 140 links. We generate

100 instances for both Waxman and power-law models and show the average results.

In order to show the effectiveness of our proposed HILPR algorithm, we compare it

with the optimal solution obtained by solving the ILP directly. We also compare HILPR

with two centrality approaches: degree centrality (DC) and betweenness centrality (BC),

which are often used in network analysis [17]. In DC, the k links and nodes of largest

94

degrees are selected as critical links and nodes, where the degree of a link (u, v) is

defined as d(u) + d(v). Similarly, in BC, the k links and nodes with largest betweenness

are selected as critical links and nodes, where the betweenness of a link or a node is

defined as the number of shortest paths among all pairs of nodes that passes through it.

For CND, we further compare HILPR with CNLS approach proposed by Arulselvan et al.

[9], which also aims to minimize the pairwise connectivity.

As the only free parameter in our algorithm, we first compare the impacts of

different γ values in our experiments such that we can balance the solution quality and

running time by carefully selecting this experimental value γ. As illustrated in Fig. 4-5,

the results returned by our algorithm are very close solutions. Thus, we use γ = 1 for

CND due to its slightly better performance, and γ = 5 for CLD to reduce the running time

since the number of critical links is usually larger compared with critical nodes. Next, we

show that our HILPR approach returns a very-near optimal solution and outperforms

other approaches.

��

����

����

����

����

����

����

�	��

�
��

����

�����

�� ��� ��� ��� �
� ����

�

��
�
��
�
��
�
�
�
�
�
��
�
��
�

����������

� �
� �
� 	
� ��

A Critical Links

��

����

����

����

����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ���

	

��

��
�
��
�
�
�
�
�
��
�
��
�

�����
�����

���
���
���
���

B Critical Nodes

Figure 4-5. The performance of HILPR using different γ in terrorist network

Fig. 4-6 and Fig. 4-7 report the comparison of the above HILPR algorithm and

centrality algorithms for CLD and CND on the above three different networks. In these

figures, we notice that the solution of HILPR algorithm is very closely approaching

the optimal solution for both CLD and CND on all these three networks (Note that

a portion of optimal solutions of CND in Waxman networks are missing due to its

95

��

����

�����

�����

�����

�����

�� ��� ��� ��� ��� ����

	

��

��
�
��
�
�
�
�
�
��
�
��
�

�����
�����

���	
!�
"�

#$��%
�

A Waxman networks

��

����

�����

�����

�����

�����

�� ��� ��� ��� ��� ����

	

��

��
�
��
�
�
�
�
�
��
�
��
�

�����
�����

���	
!�
"�

#$��%
�

B Power-law networks

��

����

����

����

����

�����

�����

�����

�����

�� ��� ��� ��� ��� ����

�
	

�
�

�
��
�
�
�
�
�
�

�

�
�

�����	�����

�����
 �
!�

"#�
$	�

C Terrorist network

Figure 4-6. The performance evaluation of HILPR against the degree and betweenness
centrality algorithms for the CLD problem

��

����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ���

�
�
	

�
	�

��
�
�
�

�
�	
�
	�
�

���������

�����
���
!�
"�

#$�	%��

A Waxman networks

��

����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ���

�
�
	

�
	�

��
�
�
�

�
�	
�
	�
�

���������

�����
���
!�
"�

#$�	%��

B Power-law networks

��

����

����

����

����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ���

	

��

��
�
��
�
�
�
�
�
��
�
��
�

�����
�����

���	
�!�"
#�
$�

%&��'
�

C Terrorist network

Figure 4-7. The performance evaluation of HILPR against the degree and betweenness
centrality, and CNLS algorithms for the CND problem

extremely high computational complexity, which is because the network is neither

almost intact nor almost fragmented). The pairwise connectivity derived from degree

centrality algorithms is much worse than HILPR algorithm because the links or nodes

of higher degrees could already connect other critical links or nodes and therefore are

not necessary to be counted as critical any more. For instance, the hub nodes (nodes

of high degree) in power-law networks are not necessarily connected with each other

such that the removal of two hub nodes could be less effective to reduce the pairwise

connectivity than the removal of two other nodes which can disconnect the network. The

betweenness centrality performs worst due to the lack of all paths information rather

than only shortest paths. That is, a pair of nodes can still be connected even when only

the shortest path between them is destroyed. The reason why our HILPR algorithm

outperforms CNLS is mainly because of the different strategy to choose the initial critical

nodes before doing the local search. The CNLS method is only based on the maximum

96

degree from a maximal independent set, hoping that the removal of these nodes can

greatly fragment the network. However, this is not always true since many nodes in

the maximal independent set are usually of low degree, and consequently do not play

an important role in destroying the network. In our HILPR approach, by solving the LP

and rounding the top elements iteratively, we take into account all possible paths and

connections between different nodes such that the critical elements can be accurately

identified.

��

���

���

���

���

����

�� �� ��� ��� ��� ���

	

�
�
�
�
�
��
�
��
��
��
�
�
�
�
�
�
�
�
��
�
�

������ ��!

�������������

Figure 4-8. Overlapping critical nodes between optimal solution and HILPR in terrorist
network

Specifically, in order to further show the effectiveness of our metric and algorithm,

i.e., the critical links and nodes in real-world networks can be correctly detected using

our algorithm, we dig into the real terrorist network in which the identities of nodes are

available. The results returned by our HILPR algorithm show that we can detect the

real important personnel by minimizing total pairwise connectivity. For instance, the two

nodes 37 and 48 in the terrorist network, which have been shown as the leaders in [57?

], can be correctly detected using our HILPR algorithm as long as k = 2. Yet, if we use

degree and betweenness centrality methods, only node 37 can be detected when k = 2

and node 48 will not be detected until k is chosen to be 6 and 5 respectively.

97

Even though our objective is to minimize the pairwise connectivity, we are still

interested in the overlapping percentage of critical nodes our HILPR algorithm returns

and the optimal critical nodes. As reported in Fig. 4-8, in the real terrorist network,

optimal critical nodes can be 100% successfully detected using our HILPR algorithm

in more than 1/3 cases for different k values. The average overlapping percentage is

around 80% since there exist some nodes playing the same role in network connectivity

such that the pairwise connectivity still can be minimized although our HILPR algorithm

identifies different critical nodes from the optimal solution.

Moreover, the running time of our HILPR algorithm is less than 5 seconds in all

these three networks, for detecting either critical links or nodes, which is only slightly

worse than centrality algorithms (1-2 seconds) and CNLS algorithm (2-3 seconds).

Especially when k is small, i.e., only the most critical elements are required to be

detected, our algorithm can finish around 3 seconds, which further illustrates the

effectiveness of our HILPR algorithm in terms of both solution quality and running time.

Metric Evaluation

We evaluate the residual network obtained by HILPR algorithm under various

network vulnerability metrics. As has been shown in Fig. 4-6 and 4-7, degree centrality

and betweenness centrality cannot accurately reflect the network vulnerability.

Therefore, we focus on the following three other metrics: (1) average shortest path

length (ASP) between each node-pairs (the shortest distance is 0 if the pair of nodes

are not connected), (2) average available flows (AAF) between each node-pairs, and (3)

global clustering coefficients (GCC) defined as #closed triplets
#connected triples of vertices, in which a

closed triplet consists of three nodes that are connected by three undirected ties.

Particularly, we are interested to see how the values of these metrics change in the

residual network after we remove the critical elements which can successfully reduce

the pairwise connectivity of the network. Since our HILPR algorithm can successfully

detect the real critical links and nodes as discussed in the previous subsection, we

98

confidently evaluate the above three metrics on the residual graphs obtained by HILPR

algorithm. Fig. 4-9 shows the changes in values of the above three metrics after

removing different number of critical links or nodes. Unfortunately, none of these three

metrics in residual networks can clearly cast the network vulnerability. As for the ASP,

we can only consider the ASP within each connected component after the network is

disconnected; otherwise the ASP becomes infinite and therefore fails to measure the

network vulnerability. However, the value of ASP within connected components is either

irregular (Fig. 4-9A) or contrary to the intuition, i.e., ASP usually increases with after

removing critical elements (Fig. 4-9B). Similarly, the AAF fails to assess the network

vulnerability due to its irregularity for critical links. The monotonous decease of AAF in

the residual networks after removing critical nodes is greatly due to the disconnection of

the network, which reduces the flow from two nodes in different connected components

to 0. However, the nodes disconnecting the network are not necessary to be critical

nodes. At last, the variation of GCC values is irregular for both critical links and nodes

due to the simultaneous decrease of the number of connected triples of vertices.

Particularly, when the network is highly fragmented, this metric can easily become

infinite and meaningless (in the residual network of k ≥ 22 as shown in Fig. 4-9B) since

the number of connected triples of vertices becomes 0.

��

���

����

����

����

�� ��� ��� ��� ��� ��� ��� �	� �
� ��� ����

�

�
��

�
�
�
�
�
��
�
��

�
��

�
�

����������

�������������������� ���! "!
��������������#���$��%� ��$! "!

&��#�����������������''�(������ &��!

A Critical Links

���

��

���

���

���

���

����

�� �	 ��� ��	 ��� ��	

�
�
�
�
�
�
�
�
�
��
�
��
�
��
�
�

����������

���������������������������� �
��������������!���"��#����"�� �

$��!���������������%%�&�������$�

B Critical Nodes

Figure 4-9. The comparison of different metrics on terrorist network

99

4.2.3 TRGA Approach under Cascading Failures

As illustrated in Section 3.7, the cascading failures could lead to the entire different

set of critical elements. In this subsection, we propose our solution, a Traceback and LP

Rounding-Greedy Algorithm (TRGA) for solving the CCND problem.

4.2.3.1 TRGA: an iterative 2-phase algorithm

In a big picture, TRGA algorithm (Algorithm 9) iteratively detects the most

vulnerable nodes until k most vulnerable nodes, in which each iteration is two-fold:

(1) identifying the ultimate failure nodes after cascading failures; (2) tracing back the

vulnerable nodes based on the above failure nodes. In addition, TRGA also takes into

account the lazy-update and constraint pruning techniques in each iteration further

reduce its time complexity. In the end, a local search is provided to improve the solution

quality. The rest of this subsection discusses two steps in each iteration in detail.

Phase 1: Ultimate Failure Nodes Identification In order to detect the ultimate failure

nodes, the idea is to first guess the extent of fragmentation in residual networks, i.e.,

the number of connected node-pairs at last, and then identify these nodes based on

the iterative rounding approach in [77], which has been show to be one of the best

approaches for detecting critical nodes when failures are not cascaded. Denoting the

residual pairwise connectivity as P, we estimate it based on the following intuition and

observation: the larger the degree, the more vulnerable the node is in a network [84].

Therefore, in each iteration, we choose the k ′ highest degrees in the residual network

(k ′ = k− #detected vulnerable nodes) to simulate the cascading failures after deleting

them and obtain the pairwise connectivity P. Then, we have the following Integer Linear

100

Programming (ILP) formulation:

min
∑
i∈V

vi

s.t. vi + vj + uij ≥ 1 ∀(i , j) ∈ E

uij + ujh − uhi ≤ 1 ∀i , j , h ∈ V∑
i ,j∈V

uij ≤ P

vi ∈ {0, 1}, uij ∈ {0, 1}

(4–5)

where vi is further defined as

vi =

1, if node i is deleted (i.e., vulnerable nodes)

0, otherwise

and

uij =

1, if i and j are connected

0, otherwise

The first additional constraint guarantees that at least one endpoint of a link has to

be deleted if its two endpoints are disconnected in the optimal solution. The second

constraint imposes the triangular connectivity while the third constraint means that

the total pairwise connectivity after cascading failures has to be at most P. To solve it

effectively, we borrow the idea in [77] to relax the equation (4–5), iteratively solve the LP

and round the largest vi . Likewise, we further apply constraints pruning in solving the LP

and local search at the end of the whole ultimate failure nodes identification.

Phase 2: Vulnerable Nodes Tracing Back With the set of ultimate failure nodes

after cascading failures, we trace back to the vulnerable nodes based on the following

greedy algorithm. In particular, in each iteration, we select a node which can lead to the

collapse of most ultimate failure nodes, call cascading influence, by simulating the failure

cascades after removing each node.

101

To obtain the cascading influence of each node at each iteration, the easiest

approach is to recompute for each node, yet this approach is extremely time-consuming.

Instead, we apply the lazy-update process after the initial failure influence. Specifically,

after the simulation at the first iteration, we maintain a max priority queue Q in which

the priority is their cascading influence. In each iteration, the node u with the highest

cascading influence is extracted and we recompute the extra nodes needed to fail u.

In the next iteration, u will be selected if it still has the highest priority. Otherwise, u is

pushed back to the priority queue, meanwhile the new node with the highest priority will

be picked. Note that if the number of selected vulnerable nodes are larger than k ′, we

will choose the k ′ highest degrees in the residual network from previous round instead

and move on to the local search phase directly.

4.2.3.2 Optimality of CCND problem

In this subsection, we propose the following Integer Linear Programming (ILP)

formulation for CCND problem in order to obtain its optimal solution. Next, we apply a

sparse metric technique to further reduce the number of constraints, meanwhile keep

the same optimal result.

Mathematical Formulation

For each pair of nodes i , j ∈ V , we define an indicator variable uij as:

uij =

1, if i and j are connected

0, otherwise

and for all integers t ∈ [0, d], we define

v ti =

1, if node i fails in round t

0, otherwise

102

Note that v 0i = 1 when node i is a vulnerable node and fails at the beginning. Then we

have the following ILP:

min
∑
i ,j∈V

uij

s.t. v di + v
d
j + uij ≥ 1 ∀(i , j) ∈ E

uij + ujh − uhi ≤ 1 ∀i , j , h ∈ V∑
i∈V

v 0i ≤ k∑
j∈N(vi)

v t−1j + θ · deg(vi)v t−1i

≥ θ · deg(vi)v ti ∀i ∈ V , ∀0 ≤ t ≤ d

v ti ≥ v t−1i ∀0 ≤ t ≤ d

∀i ∈ V , 0 ≤ t ≤ d

v ti ∈ {0, 1} ∀0 ≤ t ≤ d

uij ∈ {0, 1}

(4–6)

where the objective is to minimize the total pairwise connectivity. The first constraint

guarantees that at least one endpoint of a link has to be deleted after d round cascades

if its two endpoints are disconnected in the optimal solution. The second constraint

imposes the triangular connectivity. That is, if node i and j are connected, node j and

h are connected, node i and h have to be connected. The third constraint means that

the total pairwise connectivity after d round failure cascades is at most β fraction of all

node-pairs. The last two constraints deals with the cascades process and keeps failed

nodes to be failure in the following rounds respectively.

4.2.3.3 Experimental evaluation

In this section, we evaluate the performance of our TRGA algorithm on different

types of synthetic and real-world networks. The simulation is implemented using the

CPLEX optimization suite from ILOG, which includes the simplex method [42], the

branch & bound algorithm, and advanced cutting-plane techniques [86].

103

The three networks we use to evaluate the performance of our proposed TRGA

algorithm are described as follows: (1) US Network Assets compiled by [77] with 71

nodes and 98 edges, which provides the current customer needs in XO Communications

service. This experiment attempts to evaluate the performance of TRGA on a real-world

communication network. In order to maintain the functionality of this communication

network, we need to protect the most critical ISPs corresponding to the vulnerable

nodes identified by TRGA; (2) Power-law network topology generated by igraph library

[26] using the model in [2], with β = 1.8 and 70 nodes; (3) Small-world network topology

generated by igraph library [26] using Watts and Strogatz model in [70], with k = 2,

µ = 0.2 and 70 nodes. The selection of parameters in these two synthetic networks

is to keep the similar density as the US Network Assets network and also show the

comparison with optimal solutions. We generate 100 instances for both power-law and

small-world networks and show the average results.

In order to show the effectiveness of our proposed TRGA algorithm, we compare it

with the optimal solution obtained by solving the ILP(4–6) directly. We also compare

TRGA with two centrality approaches: degree centrality (DC) and betweenness

centrality (BC), which are often used in network analysis [17]. In DC, the k nodes of

largest degrees are selected as vulnerable nodes, and in BC, the k and nodes with

largest betweenness are selected as vulnerable nodes obtained using [19], where the

betweenness of a node is defined as the number of shortest paths among all pairs of

nodes that passes through it.

Fig. 4-10 reports the comparison of the above TRGA algorithm and centrality

algorithms for CCND on the above three different networks. In these figures, we notice

that the solution of TRGA algorithm is very closely approaching the optimal solution for

both CCND on all these three networks. Except in power-law networks in which nodes

of high degrees have been shown as important nodes [84], the pairwise connectivity

derived from degree centrality algorithms is much worse than TRGA algorithm especially

104

���

���

���

���

���

���

�	�

�� �� �� ��

�
�
�
��
�
��
�
�
�
�
�
��
�
��
�
��

�

����������������

�� ��!��� ��"�

#�
$�

%���&�'
()*+

��

���

���

���

���

���

���

�	�

�
�

���

�� �� �� �� ��

�

��
�

��
�

��
�

�
�

�
�

��
�

��
�

��
�

��� ���! ��"�#���$

#�%��&���%��'�

��

���

���

���

���

���

���

�	�

��
� ��
� ��
� ��
� ��
� ��
� ��
	 ��
� ��
�

�
��
�
��
�
��
�
�
�
�
�
��
�
��
�
��

�

���������� !���!�"���

��#��$�%�#��

A US Network Assets

��

��

��

���

���

���

���

���

�� �� �� ��

	

��

��
�

��
�

�
�

�
�
��
�
��
�
��

�

�
��
�����������

����� ������!"

��

��

���

���

���

���

���

���

���

���

�� �� �� �� ��

�
	

�
�

�
��
�
�
�
�
�
�

�

�
�
��

�

�������	���������

��!��"���!��#�

��

��

��

��

��

���

���

���

���

���

���� ���� ���	 ���� ���
 ���� ���� ���� ����

�
��
�
��
�
��
�
�
�
�
�
��
�
��
�
��

�

���������� !���!�"���

��#��$�%�#�	

B Power-Law Networks

���

���

���

���

���

���

���

���

�� �� �� ��

�
	

�
�

�

��
�

�
�

�
�
�

�

�
�
��

�

�	�	�
��������

������������ �

��

���

���

���

���

���

���

�� �� �� �� ��

	

��

��
�
��
�
�
�
�
�
��
�
��
�
��

�

�������
������ ���!

 �"��#���"��$�

��

��

���

���

���

���

���

���

���

���

���� ���� ���� ���� ���� ���	 ���
 ���� ����

�
��
�
��
�
��
�
�
�
�
�
��
�
��
�
��

�

���������� !���!�"���

��#��$�%�#��

C Small-World Networks

Figure 4-10. The performance evaluation of TRGA against degree and betweenness
centrality algorithms for the CCND problem

in small-world networks due to their homogeneity in node degrees such that the nodes

of higher degrees could already connect other vulnerable nodes and therefore are

not necessary to be counted as vulnerable any more. The betweenness centrality

performs worst in both power-law networks and US Network Assets due to the lack

of all paths information rather than only shortest paths. That is, a pair of nodes can

still be connected even when only the shortest path between them is destroyed. Yet,

it outperforms degree centrality in small-world networks, in which the difference of

degrees is not substantial. In our TRGA approach, in the first phase of each iteration,

by solving the LP and rounding the top elements iteratively, we take into account

all possible paths and connections between different nodes such that the critical

elements can be accurately identified. Meanwhile, the second phase in TRGA with the

105

back-tracing can also precisely detect the original vulnerable nodes by providing more

information than only degree or betweenness. Moreover, the running time of our TRGA

algorithm is less than 10 seconds (due to the LP solver) in all these three networks, for

detecting vulnerable nodes, which is acceptable compared with centrality algorithms (1-2

seconds), and over 100 times faster than obtaining optimal solution even with sparse

metric. Besides, US Networks Assets as a well-designed communication network in

practice, even with lower density, is shown to be the most robust among these three

topologies.

4.3 Related Works

Many existing works on network vulnerability assessment mainly focus on the

centrality measurements [17], including degree, betweenness and closeness centralities,

average shortest path length [3], global clustering coefficients [60].

Due to the failures to assess the network vulnerability using above measurements,

Sun et al. [80] first proposed the total pairwise connectivity as an effective measurement

and empirically evaluate the vulnerability of wireless multihop networks using this

metric. Arulselvan et al. [9] showed the challenge of CND problem by proving its

NP-completeness. Later on, the β-disruptor problem was defined by Dinh et al. [27]

to find a minimum set of links or nodes whose removal degrades the total pairwise

connectivity to a desired degree. They proved the NP-completeness of this problem

with respect to both links and nodes and the corresponding inapproximability results.

Even for the tree topology, Di Summa et al. [61] found that the discovery of critical nodes

also remains NP-complete using this metric. In this paper, we further investigate the

theoretical hardness of both CLD and CND on UDGs and PLGs.

In addition, there are a few effective solutions in the literature of the network

vulnerability assessment based on the pairwise connectivity. Arulselvan et al. [9]

designed a heuristic (CNLS) to detect critical nodes, which is however still far away from

the optimal solution in large-scale and dense networks. In [27], Dinh et al. proposed

106

pseudo-approximation algorithms to solve the β-disruptor problem. However, this

problem is defined differently than ours and hard to use its solution when we only know

the available cost to destroy or protect these critical links or nodes.

When failures are cascaded, these results are no longer valid, in which the

vulnerability of networks could be substantially different. Most of the works regarding

cascading failures mainly focus on models [25, 45, 85]. Moreover, there are some other

papers providing some experimental analysis [29, 67]. Unfortunately, the theoretical

works are lacked, which are crucial to the network design and proactive protection.

Therefore, we provide a probabilistic analysis to assess the vulnerability for complex

networks in the case of cascading failures, leading to deep insights to the robustness of

various networks under random failures.

In addition, most of works on network vulnerability assessment for adversarial

attacks are also studied without taking into account the cascading failures. Besides the

widely-used centrality measurements [3, 17, 60], Arulselvan et al. [9] first proposed the

total pairwise connectivity as an effective measurement, based on which they propose

the CND problem and designed a heuristic to detect critical nodes. The β-disruptor

problem was later defined by Dinh et al. [27] followed by pseudo-approximation

algorithms. Unfortunately, these approaches fail to accurately identify the vulnerable

nodes in the presence of cascading failures. In this paper, we further investigate the

theoretical hardness the CVND problem, along with an effective algorithm.

107

Algorithm 9: TRGA Algorithm
Input : Network G , Threshold θ
Output: The set of k vulnerable nodes S

1 k ′ ← k ;
2 S ← ∅;
3 while |S | < k do
4 k ′ ← k − |S |;
5 D ← k ′ largest degree nodes in G [V \ S];
6 P← #failed nodes after cascading failures by removing D from G [V \ S];
7 U ← ∅;
8 // Ultimate Failure Nodes Identification

9 while Pairwise Connectivity > P do
10 Use Constraint Pruning in [77] to solve the LP formulation with P;
11 P← P− disconnected node-pairs after removing u;
12 u ← the node with largest v ∗i ;
13 U ← U ∪ {u};
14 G ← G [V \ {u}];
15 end
16 // Vulnerable Nodes Tracing Back

17 Q ← ∅; // Priority Queue

18 S ′ ← ∅;
19 while ∃ one node does not fail do
20 if Q = ∅ then
21 foreach node u do
22 Calculate the cascading influence after removing u from G ;
23 end
24 Construct Q based on cascading influence of each node;
25 end
26 else
27 S ′ ← S ′∪ the node in Q with max priority;
28 Update cascading influence caused by removing this node;
29 end
30 end
31 if |S ′| > k ′ then
32 S ← S∪ k ′ largest degree nodes in G [V \ S];
33 end
34 else
35 S ← S ∪ S ′;
36 end
37 end
38 // Local Search

39 S∗ ← S ;
40 foreach node u ∈ S do
41 Swapping(u); (Algorithm 2 in [77] by replacing f (G ,S ′) with the pairwise

connectivity function of residual graph G after removing S ′);
42 end
43 S ← S∗;
44 return S ;

108

CHAPTER 5
CONCLUSION

In this dissertation, we first analyzed the approximation hardness and inapproximability

of optimal substructure problems on power-law graphs. These problems are only

illustrated in the literature not be able to approximated into some constant factors

on both general and simple power-law graphs although they remain APX-hard. On

the contrary, we also show that Max Clique and Graph Coloring are still very hard

to be approximated since the optimal solutions to these problems are dependent on

the structure of local graph component rather than global graph. In other words, the

power-law distribution in degree sequence does not help much for such optimization

problems without the property of optimal substructure. Moreover, we proposed a

algorithm framework, along with a theoretical framework for analyzing approximation

ratios, based on the idea of percolating the power-law graph from the nodes of lowest

degree to other nodes.

In addition, we study the robustness of power-law networks under various threats,

i.e. random failures, preferential attacks and degree-centrality attacks. Essentially,

the power-law networks are illustrated to extremely tolerate random failures. In the

meanwhile, they are more robust under both preferential attacks and degree-centrality

attacks if they have a smaller exponential factor β. When failures can be cascaded, we

showed that power-law networks are extremely vulnerable even with very small β.

In order to provide an optimal design of power-law networks, we further exploit the

topologies of practical real-world networks by optimizing the costs and guaranteeing

their robustness. The best range of the exponential factor β is illustrated to be [1.8, 2.5],

which gives a reasonable explanation for the topologies of most real-world networks.

When β < 1.8, the network maintenance cost is very expensive, and when β > 2.5, the

network robustness is unpredictable since it depends on the specific attacking strategy.

Also, we study CLD and CND optimization problems to identify critical links and nodes in

109

a network whose removals maximally destroy the network’s functions. We proved their

NP-hardness and proposed HILPR, a novel LP-based rounding algorithm, for efficiently

solving CLD and CND problems in a timely manner. In the present of cascading failures,

we further study CCND problem and developed the effective iterative 2-phase TRPA

algorithm. The experiments on various synthetic and real-world networks illustrated the

good performance of our proposed approaches.

110

REFERENCES

[1] “http://networkx.github.io/documentation/latest/reference/generators.html.” 1998.

[2] Aiello, William, Chung, Fan, and Lu, Linyuan. “A Random Graph Model for Power
Law Graphs.” Experimental Math 10 (2001): 53–66.

[3] Albert, R., Albert, I., and Nakarado, G. L. “Structural vulnerability of the North
American power grid.” Phys. Rev. E 69 (2004).2: 025103.

[4] Albert, R., Jeong, H., and Barabasi, A. L. “The diameter of the world wide web.”
Nature 401 (1999): 130–131.

[5] ———. “Error and attack tolerance of complex networks.” Nature 406 (2000).6794:
378–382.

[6] Alderson, David, Doyle, John, Govindan, Ramesh, and Willinger, Walter. “Toward
an optimization-driven framework for designing and generating realistic Internet
topologies.” SIGCOMM Comput. Commun. Rev. 33 (2003).1: 41–46.

URL http://doi.acm.org/10.1145/774763.774769

[7] Alderson, David L. and Doyle, John C. “Contrasting views of complexity and their
implications for network-centric infrastructures.” Trans. Sys. Man Cyber. Part A 40
(2010).4: 839–852.

URL http://dx.doi.org/10.1109/TSMCA.2010.2048027

[8] Alimonti, Paola and Kann, Viggo. “Hardness of Approximating Problems on Cubic
Graphs.” CIAC ’97. London, UK: Springer-Verlag, 1997, 288–298.

[9] Arulselvan, Ashwin, Commander, Clayton W., Elefteriadou, Lily, and Pardalos,
Panos M. “Detecting critical nodes in sparse graphs.” Comput. Oper. Res. 36
(2009): 2193–2200.

URL http://dx.doi.org/10.1016/j.cor.2008.08.016

[10] Austrin, Per, Khot, Subhash, and Safra, Muli. “Inapproximability of Vertex Cover
and Independent Set in Bounded Degree Graphs.” CCC ’09. 2009, 74–80.

[11] Barabasi, A. L. and Albert, R. “Emergence of scaling in random networks.” Science
(New York, N.Y.) 286 (1999).5439: 509–512.

URL http://view.ncbi.nlm.nih.gov/pubmed/10521342

[12] Barabási, AL. “Emergence of Scaling in Complex Networks.” Handbook of Graphs
and Networks (2003).

[13] Bianconi, G. and Barabási, A. L. “Bose-Einstein condensation in complex
networks.” 2000.

111

http://doi.acm.org/10.1145/774763.774769
http://dx.doi.org/10.1109/TSMCA.2010.2048027
http://dx.doi.org/10.1016/j.cor.2008.08.016
http://view.ncbi.nlm.nih.gov/pubmed/10521342

URL http://arxiv.org/abs/cond-mat/0011224

[14] Bollobas, B. Random Graphs. Cambridge University Press, 2001.

[15] Bollobás, Béla, Riordan, Oliver, Spencer, Joel, and Tusnády, Gábor. “The degree
sequence of a scale-free random graph process.” Random Struct. Algorithms 18
(2001).3: 279–290.

URL http://dx.doi.org/10.1002/rsa.1009

[16] Bondy, J.A. and Murty, U.S.R. Graph theory with applications. MacMillan London,
1976.

[17] Borgatti, Stephen P. and Everett, Martin G. “A Graph-theoretic perspective on
centrality.” Social Networks 28 (2006).4: 466 – 484.

URL http://www.sciencedirect.com/science/article/B6VD1-4J32JGJ-1/2/

c8bf3911c0e5bb0e701c0a541e380475

[18] Bornholdt, Stefan and Schuster, Heinz Georg, eds. Handbook of Graphs and
Networks: From the Genome to the Internet. New York, NY, USA: John Wiley &
Sons, Inc., 2003.

[19] Brandes, Ulrik. “A Faster Algorithm for Betweenness Centrality.” Journal of
Mathematical Sociology 25 (2001): 163–177.

[20] Chlebı́k, M. and Chlebı́ková, J. “Approximation hardness of dominating set
problems in bounded degree graphs.” Inf. Comput. 206 (2008).11: 1264–1275.

[21] Chung, Fan and Lu, Linyuan. “Connected Components in Random Graphs
with Given Expected Degree Sequences.” Annals of Combinatorics 6 (2002).2:
125–145.

URL http://dx.doi.org/10.1007/PL00012580

[22] ———. “Concentration Inequalities and Martingale Inequalities: A Survey.” Internet
Mathematics 3 (2006).1: 79–127.

URL http://dx.doi.org/10.1080/15427951.2006.10129115

[23] Cohen, Reuven, Erez, Keren, Ben-Avraham, Daniel, and Havlin, Shlomo.
“Resilience of the Internet to Random Breakdowns.” Physical Review Letters
85 (2000).21: 4626+.

URL http://dx.doi.org/10.1103/PhysRevLett.85.4626

[24] Cooper, Colin and Frieze, Alan. “A general model of web graphs.” Random Struct.
Algorithms 22 (2003).3: 311–335.

URL http://dx.doi.org/10.1002/rsa.10084

112

http://arxiv.org/abs/cond-mat/0011224
http://dx.doi.org/10.1002/rsa.1009
http://www.sciencedirect.com/science/article/B6VD1-4J32JGJ-1/2/c8bf3911c0e5bb0e701c0a541e380475
http://www.sciencedirect.com/science/article/B6VD1-4J32JGJ-1/2/c8bf3911c0e5bb0e701c0a541e380475
http://dx.doi.org/10.1007/PL00012580
http://dx.doi.org/10.1080/15427951.2006.10129115
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1002/rsa.10084

[25] Crucitti, P., Latora, V., and Marchiori, M. “Model for cascading failures in complex
networks.” Phys Rev E Stat Nonlin Soft Matter Phys 69 (2004).4 Pt 2: 045104.

[26] Csardi, Gabor and Nepusz, Tamas. “The igraph software package for complex
network research.” InterJournal Complex Systems (2006): 1695.

URL http://igraph.sf.net

[27] Dinh, T.N., Xuan, Ying, Thai, M.T., Pardalos, P.M., and Znati, T. “On New
Approaches of Assessing Network Vulnerability: Hardness and Approximation.”
Networking, IEEE/ACM Transactions on 20 (2012).2: 609 –619.

[28] Dinur, Irit and Safra, Samuel. “On the Hardness of Approximating Minimum Vertex
Cover.” Annals of Mathematics 162 (2004): 2005.

[29] Dobson, I., Carreras, B.A., Lynch, V.E., and Newman, D.E. “Complex
systems analysis of series of blackouts: Cascading failure, critical points, and
self-organization.” Chaos 17 (2007).2: 026103.

[30] Doyle, J. C., Alderson, D. L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R.,
and Willinger, W. “The “robust yet fragile” nature of the Internet.” Proc. Natl. Acad.
Sci. USA 102 (2005).

[31] Erdos, P. and Gallai, T. “Graphs with prescribed degrees of vertices.” Mat. Lapok
11 (1960): 264–274.

[32] Eubank, Stephen, Kumar, V. S. Anil, Marathe, Madhav V., Srinivasan, Aravind, and
Wang, Nan. “Structural and algorithmic aspects of massive social networks.” SODA
’04. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2004,
718–727.

[33] Fabrikant, Alex, Koutsoupias, Elias, and Papadimitriou, Christos H. “Heuristically
Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet.” Pro-
ceedings of the 29th International Colloquium on Automata, Languages and
Programming. ICALP ’02. London, UK, UK: Springer-Verlag, 2002, 110–122.

URL http://dl.acm.org/citation.cfm?id=646255.684438

[34] Faloutsos, Michalis, Faloutsos, Petros, and Faloutsos, Christos. “On power-law
relationships of the Internet topology.” Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer communication.
SIGCOMM ’99. New York, NY, USA: ACM, 1999, 251–262.

URL http://doi.acm.org/10.1145/316188.316229

[35] Ferrante, Alessandro, Pandurangan, Gopal, and Park, Kihong. “On the hardness of
optimization in power-law graphs.” Theoretical Computer Science 393 (2008).1-3:
220–230.

113

http://igraph.sf.net
http://dl.acm.org/citation.cfm?id=646255.684438
http://doi.acm.org/10.1145/316188.316229

[36] Gkantsidis, Christos, Mihail, Milena, and Saberi, Amin. “Conductance and
congestion in power law graphs.” SIGMETRICS Perform. Eval. Rev. 31 (2003).1:
148–159.

[37] Gkantsidis, Christos, Mihail, Milena, and Zegura, Ellen. “The Markov Chain
Simulation Method for Generating Connected Power Law Random Graphs.” In
Proc. 5th Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM.
2003.

[38] Glover, F. and Laguna, M. “Tabu Search.” 1997.

[39] Goyal, Amit, Bonchi, Francesco, and Lakshmanan, Laks V.S. “Learning influence
probabilities in social networks.” Proceedings of the third ACM WSDM’10. WSDM
’10. New York, NY, USA: ACM, 2010, 241–250.

URL http://doi.acm.org/10.1145/1718487.1718518

[40] Halldórsson, Magnús and Radhakrishnan, Jaikumar. “Greed is good: approximating
independent sets in sparse and bounded-degree graphs.” Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing. STOC ’94. New
York, NY, USA: ACM, 1994, 439–448.

URL http://doi.acm.org/10.1145/195058.195221

[41] Hastad, J. “Clique is hard to approximate within n1−ϵ.” FOCS ’96. Washington, DC,
USA: IEEE Computer Society, 1996, 627.

[42] Hillier, Frederick S. and Lieberman, Gerald J. Introduction to operations research,
4th ed. San Francisco, CA, USA: Holden-Day, Inc., 1986.

[43] Holme, P., Kim, B. J., Yoon, C. N., and Han, S. K. “Attack vulnerability of complex
networks.” Phys. Rev. E 65 (2002).5: 056109.

[44] Hopcroft, J. E. and Karp, R. M. “An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs.” SIAM J. Comput. 2 (1973): 225–231.

[45] Iyer, S.M., Nakayama, M.K., and Gerbessiotis, A.V. “A Markovian Dependability
Model with Cascading Failures.” Computers, IEEE Transactions on 58 (2009).9:
1238 –1249.

[46] Jamakovic, A. and Uhlig, S. “On the relationship between the algebraic connectivity
and graph’s robustness to node and link failures.” Next Generation Internet
Networks, 3rd EuroNGI Conference on. 2007, 96–102.

[47] Jamakovic, A. and Van Mieghem, P. “On the robustness of complex networks by
using the algebraic connectivity.” Proceedings of the 7th international IFIP-TC6
networking conference on AdHoc and sensor networks, wireless networks, next
generation internet. NETWORKING’08. Berlin, Heidelberg: Springer-Verlag, 2008,
183–194.

114

http://doi.acm.org/10.1145/1718487.1718518
http://doi.acm.org/10.1145/195058.195221

URL http://dl.acm.org/citation.cfm?id=1792514.1792537

[48] Janson, Svante, Łuczak, Tomasz, and Norros, Ilkka. “Large cliques in a power-law
random graph.” 2009. Comment: 13 pages.

URL http://arxiv.org/abs/0905.0561

[49] Kõnig, Dénes. “Gráfok és mátrixok.” Matematikai és Fizikai Lapok 38 (1931):
116–119.

[50] Kaiser, M. and Hilgetag, C. C. “Edge vulnerability in neural and
metabolic networks.” Biological Cybernetics 90 (2004): 311–317.
10.1007/s00422-004-0479-1.

URL http://dx.doi.org/10.1007/s00422-004-0479-1

[51] Kann, Viggo. On the Approximability of NP-complete Optimization Problems. Ph.D.
thesis, Royal Institute of Technology Stockholm, 1992.

[52] Karakostas, George. “A better approximation ratio for the vertex cover problem.”
ACM Trans. Algorithms 5 (2009).4: 41:1–41:8.

URL http://doi.acm.org/10.1145/1597036.1597045

[53] Keeling, M. J. “The effects of local spatial structure on epidemiological invasions.”
Proc. R. Soc. B 266 (1999).1421: 859–867.

[54] Kempe, David, Kleinberg, Jon, and Tardos, Eva. “Maximizing the Spread of
Influence through a Social Network.” In KDD. ACM Press, 2003, 137–146.

[55] ———. “Influential Nodes in a Diffusion Model for Social Networks.” IN ICALP.
Springer Verlag, 2005, 1127–1138.

[56] Kitsak, Maksim, Havlin, Shlomo, Paul, Gerald, Riccaboni, Massimo, Pammolli,
Fabio, and Stanley, H. Eugene. “Betweenness centrality of fractal and nonfractal
scale-free model networks and tests on real networks.” Physical Review E (Statisti-
cal, Nonlinear, and Soft Matter Physics) 75 (2007).5: 056115+.

URL http://dx.doi.org/10.1103/PhysRevE.75.056115

[57] Krebs, Valdis E. “Uncloaking Terrorist Networks.” First Monday 7 (2002).4.

URL \protect\begingroup\catcode‘\\active\def{}\catcode‘%\active\let%

%\let%%\catcode‘#\active\def#{#}\def#{#}\catcode‘\&12\relax\edef_

{_}\let__\catcode‘_\active\let__\let~~\let~~\let~~\let\\\edef${$}\

edefREFERENCES{\endgroup\url@{http://firstmonday.org/issues/issue7_4/

krebs/index.html}}REFERENCES

[58] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal,
E. “Stochastic models for the Web graph.” Proceedings of the 41st Annual

115

http://dl.acm.org/citation.cfm?id=1792514.1792537
http://arxiv.org/abs/0905.0561
http://dx.doi.org/10.1007/s00422-004-0479-1
http://doi.acm.org/10.1145/1597036.1597045
http://dx.doi.org/10.1103/PhysRevE.75.056115
\protect \begingroup \catcode `\ \active \def { }\catcode `%\active \let %%\let %%\catcode `#\active \def #{#}\def #{#}\catcode `\&12\relax \edef _{_}\let __\catcode `_\active \let __\let ~~\let ~~\let ~~\let \\\edef ${$}\edef REFERENCES{\endgroup \edef http://dx.doi.org/10.1103/PhysRevE.75.056115{http://firstmonday.org/issues/issue7_4/krebs/index.html}\unhbox \voidb@x \special {pdf:bann<</Type/Annot/Subtype/Link/Border[0 0 0]/C[0 1 1]/A<</S/URI/URI(http://dx.doi.org/10.1103/PhysRevE.75.056115)>>>>}\begingroup \let \reserved@d =[\def \def \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}{{\@@par }}\futurelet \@let@token \let \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}blue\begingroup \begingroup \let \relax \relax \relax \endgroup {http://firstmonday.org/issues/issue7_4/krebs/index.html}\endgroup \special {pdf:eann}}REFERENCES
\protect \begingroup \catcode `\ \active \def { }\catcode `%\active \let %%\let %%\catcode `#\active \def #{#}\def #{#}\catcode `\&12\relax \edef _{_}\let __\catcode `_\active \let __\let ~~\let ~~\let ~~\let \\\edef ${$}\edef REFERENCES{\endgroup \edef http://dx.doi.org/10.1103/PhysRevE.75.056115{http://firstmonday.org/issues/issue7_4/krebs/index.html}\unhbox \voidb@x \special {pdf:bann<</Type/Annot/Subtype/Link/Border[0 0 0]/C[0 1 1]/A<</S/URI/URI(http://dx.doi.org/10.1103/PhysRevE.75.056115)>>>>}\begingroup \let \reserved@d =[\def \def \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}{{\@@par }}\futurelet \@let@token \let \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}blue\begingroup \begingroup \let \relax \relax \relax \endgroup {http://firstmonday.org/issues/issue7_4/krebs/index.html}\endgroup \special {pdf:eann}}REFERENCES
\protect \begingroup \catcode `\ \active \def { }\catcode `%\active \let %%\let %%\catcode `#\active \def #{#}\def #{#}\catcode `\&12\relax \edef _{_}\let __\catcode `_\active \let __\let ~~\let ~~\let ~~\let \\\edef ${$}\edef REFERENCES{\endgroup \edef http://dx.doi.org/10.1103/PhysRevE.75.056115{http://firstmonday.org/issues/issue7_4/krebs/index.html}\unhbox \voidb@x \special {pdf:bann<</Type/Annot/Subtype/Link/Border[0 0 0]/C[0 1 1]/A<</S/URI/URI(http://dx.doi.org/10.1103/PhysRevE.75.056115)>>>>}\begingroup \let \reserved@d =[\def \def \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}{{\@@par }}\futurelet \@let@token \let \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}blue\begingroup \begingroup \let \relax \relax \relax \endgroup {http://firstmonday.org/issues/issue7_4/krebs/index.html}\endgroup \special {pdf:eann}}REFERENCES
\protect \begingroup \catcode `\ \active \def { }\catcode `%\active \let %%\let %%\catcode `#\active \def #{#}\def #{#}\catcode `\&12\relax \edef _{_}\let __\catcode `_\active \let __\let ~~\let ~~\let ~~\let \\\edef ${$}\edef REFERENCES{\endgroup \edef http://dx.doi.org/10.1103/PhysRevE.75.056115{http://firstmonday.org/issues/issue7_4/krebs/index.html}\unhbox \voidb@x \special {pdf:bann<</Type/Annot/Subtype/Link/Border[0 0 0]/C[0 1 1]/A<</S/URI/URI(http://dx.doi.org/10.1103/PhysRevE.75.056115)>>>>}\begingroup \let \reserved@d =[\def \def \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}{{\@@par }}\futurelet \@let@token \let \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}blue\begingroup \begingroup \let \relax \relax \relax \endgroup {http://firstmonday.org/issues/issue7_4/krebs/index.html}\endgroup \special {pdf:eann}}REFERENCES
\protect \begingroup \catcode `\ \active \def { }\catcode `%\active \let %%\let %%\catcode `#\active \def #{#}\def #{#}\catcode `\&12\relax \edef _{_}\let __\catcode `_\active \let __\let ~~\let ~~\let ~~\let \\\edef ${$}\edef REFERENCES{\endgroup \edef http://dx.doi.org/10.1103/PhysRevE.75.056115{http://firstmonday.org/issues/issue7_4/krebs/index.html}\unhbox \voidb@x \special {pdf:bann<</Type/Annot/Subtype/Link/Border[0 0 0]/C[0 1 1]/A<</S/URI/URI(http://dx.doi.org/10.1103/PhysRevE.75.056115)>>>>}\begingroup \let \reserved@d =[\def \def \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}{{\@@par }}\futurelet \@let@token \let \unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}\unskip \reserved@e {\reserved@f \relax }{\parskip \z@ {\@@par }}blue\begingroup \begingroup \let \relax \relax \relax \endgroup {http://firstmonday.org/issues/issue7_4/krebs/index.html}\endgroup \special {pdf:eann}}REFERENCES

Symposium on Foundations of Computer Science. FOCS ’00. Washington, DC,
USA: IEEE Computer Society, 2000, 57–.

URL http://dl.acm.org/citation.cfm?id=795666.796570

[59] Lakhina, Anukool, Papagiannaki, Konstantina, Crovella, Mark, Diot, Christophe,
Kolaczyk, Eric D., and Taft, Nina. “Structural analysis of network traffic flows.”
Proceedings of the joint international conference on Measurement and modeling of
computer systems. SIGMETRICS ’04/Performance ’04. New York, NY, USA: ACM,
2004, 61–72.

URL http://doi.acm.org/10.1145/1005686.1005697

[60] Luciano, Rodrigues, F.A., Travieso, G., and Boas, V. P. R. “Characterization of
complex networks: A survey of measurements.” Advances in Physics 56 (2007).1:
167–242.

URL http://dx.doi.org/10.1080/00018730601170527

[61] Marco Di Summa, Andrea Grosso. “Complexity of the Critical Node Problem over
trees.” Optimization Online (2011).

[62] Marin-Perianu, R. S., Scholten, J., Havinga, P. J. M., and Hartel, P. H.
“Cluster-based service discovery for heterogeneous wireless sensor networks.”
International Journal of Parallel, Emergent and Distributed Systems 23 (2008).4:
325–346.

URL http://dx.doi.org/10.1080/17445760801930948

[63] Matisziw, T. C. and Murray, A. T. “Modeling s-t path availability to support disaster
vulnerability assessment of network infrastructure.” Computers & Operations Re-
search 36 (2009).1: 16 – 26. Part Special Issue: Operations Research Approaches
for Disaster Recovery Planning.

URL http://www.sciencedirect.com/science/article/B6VC5-4PP2D14-1/2/

7e5b80edb520a880374876773c0a5e4d

[64] Medina, Alberto, Lakhina, Anukool, Matta, Ibrahim, and Byers, John. “BRITE: An
Approach to Universal Topology Generation.” 2001.

[65] Medina, Alberto, Matta, Ibrahim, and Byers, John. “On the Origin of Power Laws in
Internet Topologies.” Tech. rep., Boston University, Boston, MA, USA, 2000.

[66] Mihail, Milena and Papadimitriou, Christos H. “On the Eigenvalue Power Law.”
RANDOM. 2002, 254–262.

[67] Mirzasoleiman, Baharan, Babaei, Mahmoudreza, Jalili, Mahdi, and Safari,
MohammadAli. “Cascaded failures in weighted networks.” Physical Review E
84 (2011): 046114+.

116

http://dl.acm.org/citation.cfm?id=795666.796570
http://doi.acm.org/10.1145/1005686.1005697
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1080/17445760801930948
http://www.sciencedirect.com/science/article/B6VC5-4PP2D14-1/2/7e5b80edb520a880374876773c0a5e4d
http://www.sciencedirect.com/science/article/B6VC5-4PP2D14-1/2/7e5b80edb520a880374876773c0a5e4d

URL http://dx.doi.org/10.1103/PhysRevE.84.046114

[68] Molloy, Michael and Reed, Bruce. “A critical point for random graphs with a given
degree sequence.” Random Struct. Algorithms 6 (1995): 161–179.

URL http://portal.acm.org/citation.cfm?id=259573.259582

[69] ———. “The Size of the Giant Component of a Random Graph with a Given
Degree Sequence.” Comb. Probab. Comput. 7 (1998).3: 295–305.

URL http://dx.doi.org/10.1017/S0963548398003526

[70] Newman, M. E. J. and Watts, D. J. “Renormalization group analysis of the
small-world network model.” Physics Letters A 263 (1999).4-6: 341–346.

[71] Norros, I. and Reittu, H. “On a conditionally Poissonian graph process.” Advances
in Applied Probability (2006): 38–59.

[72] P. Satorras, R. and Vespignani, A. “Immunization of complex networks.” Phys. Rev.
E 65 (2002).3: 036104.

[73] Pandurangan, Gopal.
“https://sites.google.com/site/gopalpandurangan/papers-by-date.” 2006.

[74] Redner, S. “How popular is your paper? An empirical study of the citation
distribution.” The European Physical Journal B - Condensed Matter and Com-
plex Systems 4 (1998).2: 131–134.

URL http://dx.doi.org/10.1007/s100510050359

[75] Sachtjen, M. L., Carreras, B. A., and Lynch, V. E. “Disturbances in a power
transmission system.” Physical Review E 61 (2000).5: 4877–4882.

URL http://dx.doi.org/10.1103/PhysRevE.61.4877

[76] Serfling, R. J. “Probability Inequalities for the Sum in Sampling without
Replacement.” The Annals of Statistics 2 (1974).1: 39–48.

URL http://dx.doi.org/10.1214/aos/1176342611

[77] Shen, Y., Nguyen, N. P., Xuan, Y., and Thai, M. T. “On the Discovery of Critical
Links and Nodes for Assessing Network Vulnerability.” Networking, IEEE/ACM
Transactions on PP (2012).99: 1.

[78] Shen, Yilin, Nguyen, Nam P., and Thai, My T. “Exploiting the Robustness on
Power-Law Networks.” COCOON. 2011, 379–390.

[79] Smirnov, Michael, Biersack, Ernst W., Blondia, Chris, Bonaventure, Olivier,
Casals, Olga, Karlsson, Gunnar, Pavlou, George, Quoitin, Bruno, Roberts, James,
Stavrakakis, Ioannis, Stiller, Burkhard, Trimintzios, Panos, and Mieghem, Piet Van,

117

http://dx.doi.org/10.1103/PhysRevE.84.046114
http://portal.acm.org/citation.cfm?id=259573.259582
http://dx.doi.org/10.1017/S0963548398003526
http://dx.doi.org/10.1007/s100510050359
http://dx.doi.org/10.1103/PhysRevE.61.4877
http://dx.doi.org/10.1214/aos/1176342611

eds. Quality of Future Internet Services, COST Action 263 Final Report, vol. 2856
of Lecture Notes in Computer Science. Springer, 2003.

[80] Sun, Fangting and Shayman, Mark A. “On pairwise connectivity of wireless
multihop networks.” Int. J. Secur. Netw. 2 (2007).1/2: 37–49.

URL http://dx.doi.org/10.1504/IJSN.2007.012823

[81] Sydney, A., Scoglio, C., Schumm, P., and Kooij, R. E. “Elasticity: topological
characterization of robustness in complex networks.” Proceedings of the 3rd
International Conference on Bio-Inspired Models of Network, Information and
Computing Sytems. BIONETICS ’08. ICST, Brussels, Belgium, Belgium: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008, 19:1–19:8.

URL http://dl.acm.org/citation.cfm?id=1512504.1512529

[82] Tangmunarunkit, Hongsuda, Govindan, Ramesh, Jamin, Sugih, Shenker, Scott,
and Willinger, Walter. “Network topology generators: degree-based vs. structural.”
SIGCOMM. 2002, 147–159.

[83] Vazirani, Vijay V. Approximation algorithms. New York, NY, USA: Springer-Verlag
New York, Inc., 2001.

[84] Wang, Xiao F. and Chen, Guanrong. “Complex networks: small-world, scale-free
and beyond.” Circuits and Systems Magazine, IEEE 3 (2003).1: 6–20.

URL http://dx.doi.org/10.1109/MCAS.2003.1228503

[85] Watts, Duncan J. “A simple model of global cascades on random networks.”
Proceedings of the National Academy of Sciences 99 (2002).9: 5766–5771.

URL http://www.pnas.org/content/99/9/5766.abstract

[86] Wolsey, L. Integer Programming. 1998.

[87] Yan, Guanhua, Chen, Guanling, Eidenbenz, Stephan, and Li, Nan. “Malware
Propagation in Online Social Networks: Nature, Dynamics, and Defense
Implications.” Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (AsiaCCS’11). Hongkong, China, 2011.

118

http://dx.doi.org/10.1504/IJSN.2007.012823
http://dl.acm.org/citation.cfm?id=1512504.1512529
http://dx.doi.org/10.1109/MCAS.2003.1228503
http://www.pnas.org/content/99/9/5766.abstract

BIOGRAPHICAL SKETCH

Yilin Shen received his Ph.D. from the University of Florida in the spring of 2013

and his B.S. degree in applied mathematics from Donghua University, Shanghai, China,

in 2005. His research focuses on vulnerability assessment and security of complex

networks, including communication networks, wireless sensor networks and social

networks, and designing approximation algorithms for network optimization problems.

He is a student member of the IEEE.

119

CASCADING PROPAGATION AND OPTIMIZATION IN NETWORKS

By

DUNG T. NGUYEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

c⃝ 2013 Dung T. Nguyen

2

I dedicate this to the internal God

3

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. My T. Thai for great advices during the PhD

time. I was bestowed a precious gift working with her in four years. Her good examples

are my treasure which have gradually made me stronger in both doing research and

overcoming difficulties. It was lucky for me to get infected by her passion and curiosity

when I was trying to solve challenging problems. When I was lacking of motivation, the

ritual to get motivated may be quite simple: seeing her as an example.

I am thankful to Prof. Alireza Entezari, Prof. Tamer Kahveci, Prof. Sartaj K. Sahni,

and Prof. J. Cole Smith for their time and constructive opinions.

I would like to thank all of my closed and acquainted friends for sharing their

knowledge, perspectives, opinions, and enjoying moments.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

CHAPTER

1 INTRODUCTION . 11

1.1 Cascading Failure in a Network . 12
1.2 Cascading Failure in Interdependent Networks 12
1.3 Influence Diffusion in Multiple Online Social Networks 13
1.4 Organization . 14

2 CASCADING FAILURE UNDER LOAD REDISTRIBUTION IN NETWORKS . . 15

2.1 Network Model and Problem Formulation 16
2.1.1 Graph Notations . 16
2.1.2 Cascading Failure Model . 16
2.1.3 Problem Definition . 18

2.2 Inapproximability Result . 18
2.3 Cascading Potential and Derived Algorithms 22

2.3.1 Cascading Potential . 22
2.3.2 Cascading Potential Algorithm . 23
2.3.3 Adaptive Cascading Potential Algorithm 24
2.3.4 Fully Adaptive Cascading Potential Algorithm 26

2.4 Cooperating Attack Algorithm . 27
2.5 Experimental Evaluation . 30

2.5.1 Datasets . 31
2.5.2 The performance of Different Algorithms 32
2.5.3 Network Robustness Under Different Settings 34
2.5.4 Vertex Load and Network Robustness 36
2.5.5 Network Topology and Network Robustness 37

2.6 Related Works . 37
2.7 Summary . 38

3 CASCADING FAILURE OF NODES IN INTERDEPENDENT NETWORKS . . . 39

3.1 Network Model and Problem Definition . 42
3.1.1 Interdependent Network Model . 42
3.1.2 Cascading Failures Model . 42
3.1.3 Problem Definition . 42

5

3.2 Computational Complexity . 43
3.3 Greedy Framework for IPND Problem . 45

3.3.1 Maximum Cascading (Max-Cas) Algorithm 45
3.3.2 Iterative Interdependent Centrality (IIC) Algorithm 47

3.3.2.1 Updating function . 48
3.3.2.2 Convergence . 49

3.3.3 Hybrid Algorithm . 53
3.4 Experimental Evaluation . 54

3.4.1 Dataset and Metric . 54
3.4.2 Performance of Proposed Algorithms 55
3.4.3 Vulnerability Assessment of Interdependent Systems 57

3.4.3.1 Different coupled communication networks 57
3.4.3.2 Disruptor threshold . 58
3.4.3.3 Different coupling schemes 59

3.5 RPDCC / RNDCC Coupling Schemes . 60
3.6 Related Works . 62
3.7 Summary . 62

4 INFLUENCE DIFFUSION IN MULTIPLE ONLINE SOCIAL NETWORKS 64

4.1 Network Model and Problem Definition . 67
4.1.1 Graph Notations . 67
4.1.2 Influence Propagation Model . 68
4.1.3 Problem Definition . 69

4.2 Network Alignment . 69
4.3 Lossless Coupling Schemes . 71

4.3.1 Clique Lossless Coupling Scheme 72
4.3.2 Star Lossless Coupling Scheme . 77

4.4 Lossy Coupling Schemes . 78
4.5 Influence Relay . 82
4.6 Experimental Evaluation . 86

4.6.1 Datasets . 87
4.6.2 Comparison of Coupling Schemes 88
4.6.3 Benefits of Coupled Network . 91
4.6.4 Bias in Selecting Seed Nodes . 93

4.7 Extensions to Other Cascading Models 95
4.8 Summary . 96

5 CONCLUSIONS . 97

REFERENCES . 98

BIOGRAPHICAL SKETCH . 103

6

LIST OF TABLES

Table page

4-1 Foursquare-Twitter and co-author network data-sets 87

7

LIST OF FIGURES

Figure page

2-1 When node u fails, its load is redistributed to the neighbor nodes. Among these
node, v receives a high portion of load from u and becomes overloaded. The
load of v is redistributed to its neighbors which makes z fail. Finally, the load
from z continues to cause w fail and the process stops. 17

2-2 Reduction from MIN3SC2 to CasCN . 19

2-3 Vulnerability of WSN network under normal setting 33

2-4 Vulnerability of WSN network under safety setting 34

2-5 Vulnerability of WSN network under scaled safety setting 35

2-6 Network robustness with different failure tolerance schemes 36

2-7 Network robustness under different load distribution 36

2-8 Network topology and robustness . 37

3-1 Example of Interdependent Power Network and Communication Network . . . 40

3-2 An example of reduction from MIS to IPND . 44

3-3 Performance Comparison on Different Interdependent Systems: WS System
(A, B), SS System (C, D), and Eq-SS System (E, F). 56

3-4 The Vulnerability Of A Fixed Power Network . 58

3-5 The Disruptor Threshold with Different Network Sizes 59

3-6 Vulnerability Comparison using Different Coupling Schemes 61

4-1 Auto update across social networks . 66

4-2 The number of shared users between major OSNs in 2009 [2] 66

4-3 An example of lossless coupling scheme . 74

4-4 Star Synchronization . 78

4-5 Lossy coupled network using easiness parameters. The number of edges is
much less than the lossless coupled network. 80

4-6 Comparing Coupling Schemes for Finding Minimum Seed Set on co-author
Networks (upper figures) and on FSQ and Twitter (lower figures) 89

4-7 Comparing coupling schemes with different overlapping fraction f 90

4-8 Comparing coupling schemes with different number of propagation hops d . . 90

8

4-9 The quality of seed sets with and without using the coupled network 92

4-10 The quality of seed sets with and without using the coupled network 93

4-11 The support between networks on the influence propagation of a network with
d = 4 (upper figures) and d = 8 (lower figures) hops. C, H, N, F, and T are
the abbreviations of CM, Het, NetS, FSQ, and Twitter. 94

4-12 The bias in selecting seed nodes on synthesized networks (upper figures)
and on FSQ and Twitter (lower figures) . 95

4-13 The influence contribution of seed nodes from component networks 96

9

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

CASCADING PROPAGATION AND OPTIMIZATION IN NETWORKS

By

Dung T. Nguyen

August 2013

Chair: My T. Thai
Major: Computer Engineering

Cascading processes are more and more popular in highly connected networks.

These processes are recognized in a wide range of networks with different contexts:

the information diffusion in online social networks, the cascading crisis in the network

of banks, the cascading failure in power networks, etc. Regardless of the network

type and mechanism, they still share fundamental properties: (1) the root cause is the

influences/dependencies between nodes of one or more networks, (2) the process often

starts from a small group of nodes, (3) the impact is high due to the large number of

involved nodes. It is thus crucial to study these processes and exploit them efficiently.

In this work, we study several optimization problems relating to the cascading

process in networks. In particular, we mainly focus on two kinds of problems: (1) finding

a small set of nodes which can maximize the impact through the cascading process

and (2) finding a set of nodes with minimum size which causes the desired impact.

Depending on the cascading mechanism, we design different strategies to solve the

problem efficiently by exploiting both the properties of both the cascading mechanism

and the network structure.

10

CHAPTER 1
INTRODUCTION

Nowadays, the world is more and more connected and we can see networks

everywhere. Networks, from power substations in power networks, routers in communication

networks, users in online social networks, etc., represent the interaction between entities

and play crucial roles in the economy. Power networks are important infrastructure

networks whose malfunction can lead the change or stopping of almost daily activities.

On the other hand, large-scaled online social networks are easing the communication

between people by providing a platform for users to connect and keep updating from

each other. Due to the high impact of these networks on the economy, it is crucial to

study phenomena which significantly affect activities in networks.

As entities in networks interact with each other, the cascading propagation is one of

the most noticeable phenomena in networks. If an event happens at a particular entity,

it can triggers events at other entities through the connection between entities in the

network. For instance, the interaction between users in online social networks serves

as the medium to spread information, ideas, and influences. Initially, only a small group

of users aware of the information and share in the networks; then, the information is

spread to their friends, friends of their friends, and so on. As a result, large number of

users will aware of the information even before the mass media broadcast it as in the

case of Michael Jackson’s death [1]. In the power network, the cascading propagation

can cause severe damage by multiplying the initial failure. In 2003, the initial failure

of one power line triggered a series of failures which resulted in the outage of the

majority of Italy [47]. The large-scaled effect of the cascading propagation inspires us

to design methods to exploit its positive effects and prohibit negative effects. However,

the cascading mechanisms are various in networks and too broad, thus we focus on

investigating the cascading propagation in following settings:

11

1.1 Cascading Failure in a Network

Networks where the operation of a node strongly depends on the operation of other

nodes like power networks are extremely vulnerable under cascading failure. In these

networks, every node bears dynamic operational load depending on the demand. If the

demand is high, the nodes’ loads are high and may reach to their maximum operational

capacities. In general, nodes share the network demand so that each of them can

operate under the permitted capacity. However, when some nodes are malfunctioned or

failed, they shift the load to nearby nodes in the network. These nodes may be forced

to work beyond their capacities so they are overloaded redistribute their load onto other

nodes. As a consequence, a large number of nodes may be overloaded and thereby the

network halts the operation entirely.

As the failure of a small group of nodes may result in a catastrophic damage on the

network operation, it is important to identify such groups. These nodes are critical to the

operation of the network, thus we need to protect them from being attacked. Although

existing literature provides various vulnerability assessment of networks under the

cascading failure, there is still lacking of efficient solutions for this problem. These works

mainly exploit the centrality measurement to locate most critical nodes which are not

enough to capture the complicated interaction of nodes. We design new methods which

consider both network structure and the interaction between nodes to provide better

solutions.

1.2 Cascading Failure in Interdependent Networks

In reality, infrastructure networks are interdependent on each other at a large

degree. The power stations in the power grid consume the fuel delivered by the

transportation network to generate electricity and are controlled via the communication

network. If the transportation network or the communication network encounters any

problems, the operation of the power network will suffered. On the other hand, the power

network provides electricity for routers of the communication network and electrical

12

vehicles. Therefore, the failure of a critical group of nodes in any network may result in

a series of cascading failures across the system and cause catastrophic loss. If each

network is treated separately, we will underestimate the vulnerability of networks.

We need to revisit the vulnerability assessment of networks taking into account

the effect of interdependencies between networks. Let’s consider the power and

communication networks. In the attacking point of view, an attacker can analyze the

interdependencies and identify nodes whose failures trigger a large-sized cascading

process back and forth between networks. If we only investigate a single network,

these nodes seem to be scot-free and we fail to protect them. Although there are many

efficient methods to identify critical nodes in a single network, it is still lacking ones for

interdependent networks. In this work, we propose a new centrality for interdependent

networks which can be used to locate critical nodes efficiently.

1.3 Influence Diffusion in Multiple Online Social Networks

In the area of online social networks (OSNs), the cascading propagation of

information transforms networks such as Facebook, Google+, and Twitter to a fruitful

foundation for viral marketing. These networks equip users tools to connect and make

new friends, to share opinions, to update information from friends, etc., thus attract a

considerable fraction the population to join in. In return, users create the content and

circulate the information at a level that has been achieved before by any of previous

communication medium. In addition, users in online social networks also incur the

same peer-pressure effect as the reality, i.e., in which an individual’s opinion or decision

is influenced by his friends and colleagues. These factors raise a practical important

problem in OSNs: how to find the smallest set of influencers who can influence a

massive number of users.

A noticeable property OSNs is the overlapping among major OSNs which has a

strong impact on the diffusion of information. Since a user can share the information in

all networks which he participates in, the influence of a user in all networks is significant

13

larger than in any network. Therefore, it is essential to evaluate the influence of users

in multiple OSNs to identify most influential ones. However, we can not trivially mitigate

evaluation methods for a single network to multiple networks. To overcome this difficulty,

we propose novel schemes to couple multiple networks into one network reserving all

diffusion information and solve the problem in the coupled network.

1.4 Organization

The rest of the work is organized as follows. Chapter 2 studies the vulnerability

of power networks under the load redistribution model. In chapter 3, we present the

cascading failure model for interdepent networks and propose algorithms to detect

critical nodes. Next, chapter 4 investigates information diffusion in multiple online social

networks. Finally, chapter 5 concludes the whole thesis.

14

CHAPTER 2
CASCADING FAILURE UNDER LOAD REDISTRIBUTION IN NETWORKS

The important role of power networks in the economy as well as in the society

has attracted a great deal of research effort to analyze the vulnerability of these

networks. The failure or malfunction of these networks can cause severe effect. On

28 September 2003 [47], the wide area blackout affected the major of Italy and made

3/4 of Italy without electricity for 2 hours, the traffic system is halted. This shows that

large blackouts are not rared and can happen everywhere. Moreover, it implies that

intentional attacks can cause mass damage to power networks. When the small number

of components are attacked, the large blackout can happen in a very short time. Thus,

it is crucial to identify most vulnerable components of the power network so that we can

protect in advance.

The common denominator of large blackouts is that the failures of components

happened according to the cascading manner. It often starts with the failure of one or a

few components, then some other components are failed due to the dependencies with

previous failed components. The failure of these components continue to cause other

components fail. The process continues until there is no more failed component. The

power statiosn which are nodes in the power network can only work well if the load is

under the maximum capacity they can handle. When a station is overloaded, it can not

work with the best performance or even fails. During the operation, the power network is

designed such that all stations work under their capacity. But when some stations fails,

other stations which are directly or indirectly connected with failed ones may have bear

more load. If the load of a station surpasses its capacity, it will fail and continue to shred

its load to other stations. As a result of the load redistribution process, a large number of

failed stations may be failed at the end. We would like to predict the process so that we

can prevent it, but the dependencies between stations make it difficult to do so. Thus, it

15

is necessary to develop efficient tools to analyze the sophisticated cascading process of

failures in power networks.

In this chapter, we study the critical node detection problem in power networks

under the load redistribution of nodes. Specifically, we aim to find the set of k nodes

whose failures maximize the number failed nodes after the cascading failure. We

design two efficient algorithms to solve problem: adaptive cascading potential algorithm

and cooperating attack algorithm. The efficiency of each algorithm depends on the

topological structure of the network, hence they compensate each other to solve the

problem.

The rest of the chapter is organized as follows. We first present the load redistribution

model and problem formulation in Section 2.1. Section 2.2 shows the hardness result.

After that, we propose the cascading potential metric and design various algorithms in

Section 2.3. We next introduce the cooperating algorithm which is efficient on robust

networks in Section 2.4. Section 2.5 shows the experimental evaluation. Finally, we

review the literature in Section 2.6 and summerize the chapter in Section 2.7.

2.1 Network Model and Problem Formulation

2.1.1 Graph Notations

The network is modeled by a weighted directed graph G = (V ,E) with vertex

set V of |V | = n vertices and edge set E of |E | = m oriented connections between

vertices. Each edge (u, v) is associated with a weight w(u, v) presenting the operating

parameter of the network. The higher w(u, v) is, the more load is distributed from u to v .

In addition, each vertex u has the current load L(u) and a capacity C(u). The capacity

C(u) is the maximum load that vertex u can accept. We denote the set of incoming

neighbors, outgoing neighbors of u by N−
u and N+u , respectively.

2.1.2 Cascading Failure Model

In the Load Redistribution model (LR-model) [56] [53], nodes are failed in the

cascading manner due to the load redistribution of failed nodes. Initially, a set of nodes

16

S are failed, then the failures are propagated to other nodes in time steps. When node

u fails, its load is redistributed to its neighbors as illustrated in Fig. 2-1. Each alive

neighbor will received an additional load which is proportional to its weight. Precisely,

each neighbor v of u will receive additional load:

∆L(v) = L(u)× w(u, v)∑
z∈N+u w(u, z)

Due to the load redistribution, the load of some nodes are exceeding their

capacities, hence fail in the next time step. The process of load redistribution and

node failing will stop when there are no more failed nodes. The set of failed nodes

caused by the initial failure of S is denoted by F (S).

Figure 2-1. When node u fails, its load is redistributed to the neighbor nodes. Among
these node, v receives a high portion of load from u and becomes
overloaded. The load of v is redistributed to its neighbors which makes z fail.
Finally, the load from z continues to cause w fail and the process stops.

17

2.1.3 Problem Definition

Due to the cascading failures, the failures of a small set of nodes S can result in

a catastrophic number of failed nodes. These nodes becomes the target to attack the

network. Additionally, given the same set of attacked nodes, different attacking orders

lead to different outcomes. With the same attacking cost, the attacker can choose the

best order with suitable time for each attacked node. However, the cascading failures

happen very fast, it is almost impossible to schedule the failure of each node with

specific time steps. We consider a more practical strategy in which target nodes are

attacked one by one. The next node is taken down when the cascading process stops.

In particular, given an order set S = {s1, s2, ... , sk}, the set of fails after si is attacked is

Fi(S) = F (Fi−1(S) ∪ {si}). Denote F+(S) as Fk(S), the set of failed nodes when nodes

in S is attacked serially. We formally define the problem as follows.

Definition 1 (Cascading Critical Node Problem (Cas-CNP)). Given a network G =

(V ,E) and an integer k , the problem asks to find a ordered subset S ⊆ V of size |S | = k

such that the serial failures of nodes in S maximizes the number of failed nodes F+(S)

under the LR-model.

2.2 Inapproximability Result

In this section, we show the algorithmic hardness of the Cas-CN problem. We

expect to design an algorithm that can identify the optimal seed set in an acceptable

time. However, it may take the time as an exponential funtion of the number of nodes to

compute even a set whose impact is close to the optimal set’s. The hardness result is

shown in Theorem 2.1.

Theorem 2.1. It is NP-hard to approximate the CasCN problem within ratio of O(n1−ϵ)

for any constant 1 > ϵ > 0.

Proof. We use the gap-introduction reduction [51] to prove the inapproximability of

the CasCN problem. Using a polynomial time reduction from Set Cover, to the CasCN

problem, we show that if there exists a polynomial time algorithm that approximates the

18

later problem within O(n1−ϵ), then there exists a polynomial time algorithm to solve the

former problem.

Definition 2 (Set Cover problem). Given a universe U = {e1, e2, ... , en}, a collection

of subsets S = {S1,S2, ... ,Sm} ⊆ 2U , and an integer k , the Set Cover problem asks

whether or not there are k subsets whose union is U .

Instead of using the hardness result of the general Set Cover problem, we use the

result on a restricted variant MIN3SC2 of the Set Cover problem where the sizes of

subsets are at most 3 and each element appears in exactly two subsets.

Theorem 2.2 ([20]). The Set Cover problem is NP-hard even when the sizes of subsets

are bounded by 3 and each element appears in exactly two subsets.

Reduction. Given an instance of the Set Cover problem I = (U ,S, k) where each

element appears in exactly two subsets, n1 = |U| and m1 = |S|, we construct an instance

I ′ of the CasCN problem as illustrated in Fig. 2-2.

Figure 2-2. Reduction from MIN3SC2 to CasCN

19

The vertex set V . Add a set vertex ui for each set Si ∈ S, an element vertex vj for

each element ej ∈ U , and d = (n1 +m1)
2
ϵ extra vertices q1, q2, ... , qd .

The edge set E . Add edge (ui , vj) if the element vj in the set Si . In addition, there is

an edge from vj to qp ∀1 ≤ j ≤ n1, 1 ≤ p ≤ d . All edges have the weight of 1.

Vertex load and capacity. The load and capacity of the set vertex ui are L(ui) = |Si |

and C(ui) = 1 + L(ui). The load and capacity of the element vertex vj are L(vj) = d − 1

and C(vj) = d − 0.5. All extra vertices have the load of 0 and capacity of n1 − 1 + n1
d

.

Next, we prove that if I has a set cover of size k then there exist a seeding set

A ⊂ V such that |F (A)| > d . Otherwise, for all A ⊂ V and |A| ≤ k , |F (A)| < n1 +m1.

Assume that I has a set cover SC of size k , then we will select the set A = {ui |Si ∈

SC} as the seeding set. Initially, each vertex ui ∈ S redistributes 1 unit of load to each of

its |Si | neighbors. Since each element is covered by at least one set in SC, each vertex

vj receives the additional load of at least 1. At the next round, vj has the load at least

L(vj) ≥ (d − 1) + 1), which is higher than its capacity, and is failed. When vj fails, it

equally redistributes L(vj)/d ≥ 1 load to its d extra neighbor vertices. The load of each

extra vertex qp after receiving load from all failed element vertices is L(qp) ≥ n > C(qp),

hence all extra vertices are failed. The cascading process stops with |F (A)| = d + n1 + k

failed vertices.

In the case I has no set cover of size k , we will show the optimal seeding set can

cause at most n1 + k nodes fail in I ′. Let A be an arbitrary optimal seeding set. We

observe that a set vertex only fails when it is selected in the seeding set since it has

no incoming edge. Thus, there are at least m1 − k set vertices which are not in A. We

can replace any extra vertex qp ∈ A, if there are any, by a unselected set vertex without

decreasing the number of failed nodes. Next, suppose that there exists an element

vertex vj ∈ S , we can also replace it by a set vertex. If vj is adjacent to some vertex

ui ∈ A, we can remove vj from A while maintaining the same number of failed nodes.

If vj is not adjacent to any vertex in A, we just replace vj by one of its neighborhood

20

set vertex ui . ui will make vj fail, so the number of failed nodes caused by A is not

decreased. So, we can replace extra and element vertices in A such that A contains

only set vertices. Since, there is no set cover of size k , there at least one vertex is not

adjacent to any vertex in A ,i.e, the number of failed element vertices is at most n1 − 1.

Each failed element vertex vj is adjacent to at most 2 set vertices, hence its load is at

most L(vj) ≤ d + 1. Each extra vertex qp receives at most (d + 1)/d redistributed load

from failed element vertices which are accumulated to at most:

(n1 − 1)(d + 1)
d

= n1 − 1 +
n1 − 1
d

< n1 − 1 +
n1
d
= C(qp)

Thus, there is no extra vertex fails. The total failed nodes caused by A is at most

n1 + k < n1 +m1.

Now suppose that we have polynomial algorithm A which approximates CasCN

problem within n1−ϵ, we can decide the set cover problem as follows. For any instance I

of the Set Cover problem, we construct the instance I ′ as above in polynomial time as

d is a polynomial function of n1 and m1. Now, if I has a set cover of size k , the optimal

Aopt seeding set causes at least d vertices fail in I ′. The algorithm A approximate the

optimal solution within n1−ϵ (n = n1 + m1 + d , the number of vertices in I ′), so it finds a

seeding set A(I ′) whose causes at least (m1 + n1) vertices fail:

|F (A(I ′)| ≥ |F (Aopt)|
n1−ϵ > d

(d+m+n)1−ϵ

> d
(2d)1−ϵ >

dϵ

2

= (m1+n2)
2

2
> m1 + n1

On the other hand, if I has no set cover of size k , then the optimal seeding set Aopt of I ′

causes less than (m1 + n1) vertices fail. We have:

|F (A(I ′)| ≥ |F (Aopt)| < (m1 + n1)

21

It implies the I has a set cover of size k if and only if |F (A(I ′)| > (m1 + n1). Hence, we

can use A to decide the Set Cover problem in polynomial time i.e. P = NP.

2.3 Cascading Potential and Derived Algorithms

In this section, we introduce a new metric to measure the node importance under

the cascading failure, and then apply it to design efficient algorithms for CasCN. To

evaluate the vulnerability of networks under the load redistribution, previous works in

the literature propose various ranking methods and measure the effect of attacking

top k nodes. However, these methods consider very limited topological information,

hence may miss the most critical nodes. In [7, 36, 53], the authors solely use the load

as the criterion to rank nodes. The failure of a high load node intuitively tends to cause

a large number of nodes fail as it redistributes a large amount of large to its neighbors,

but cascading failures started from a small load node at the right position may result

in a larger number of failed nodes [54]. Wang et al. [54] overcome this shortcoming by

directly assessing the effect of the cascading process, the number of failed nodes, which

is triggered by the evaluated node. Nevertheless, the direct impact is one the top factors,

they fail to incorporate the indirect impact into the node importance. When multiple

nodes are attacked in the network, the indirect impact of a node is the base for the direct

impact of other nodes. Next, we introduce a new metric which considers both direct and

indirect impact of the node.

2.3.1 Cascading Potential

The cascading potential of a node is defined as combination of all possible impacts

a node causes in the network under the cascading effect. Let’s consider the failure of

node u. For any other node v , there are two possible impacts that u can induce on v :

• Failure impact. The failure of u leads to the failure of v .

• Load impact. The failure of u makes the load of v increase but not enough to fail.

22

The overall failure impact and load impact of u in the network are defined as the

number of failed nodes and the total of increased load of unfailed nodes, respectively.

The cascading potential of u is the linear combination of these factors:

C(u) = |F ({u})|
n

+

∑
v∈V−F ({u})∆Lu(v)∑

v∈V−F ({u})(C(v)− L(v))

where F ({u}) is the set of failed nodes when u fails and ∆Lu(v) is the additional load

that v receives due to the failure of u.

In this formula, we normalize both the failure and load impacts to avoid the

unit difference. The failure impact is divided by the number of nodes, hence is at

most 1 when all other nodes fail. Similarly, the load impact is divided by the total of

capacity-load difference of unfailed nodes and achieves the maximum value 1 when all

remained nodes are at the edge of failure, i.e., the most vulnerable state of the network.

The role of the load impact. In the formulation of the cascading potential, the

load impact plays an important role to provide a better assessment of the network

vulnerability comparing to the metric in [54]. If only one node is attacked, it is obviously

to choose the node which maximizes the number of failed nodes, i.e., to use Wang

et al.’s metric. However, when multiple nodes are attacked, we need to consider the

co-impact of attacked nodes to trigger a large size cascading failure. The load impact is

bridge connecting the impact of these nodes since the load impact of a node is the base

for the failure impact of other nodes. For example, if u has the maximum load impact of

1 and the network is strongly connected, then attacking any node after u can take down

the whole network. Thus, the cascading potential evaluate the importance of nodes

more comprehensively.

2.3.2 Cascading Potential Algorithm

Intuitively, we can use cascading potential directly to design an algorithm for

CasCN. We first compute the cascading potential of all nodes, then select top k as

attacked nodes. The algorithm is described in Algorithm 1.

23

Algorithm 1 Cascading Potential Algorithm
Require: A network G = (V ,E), an integer k .
Ensure: A set S of k attacked nodes.

Compute the cascading potential of all nodes
Sort nodes in non-increasing order of the cascading potential C(u1) ≥ C(u2) ≥ ... ≥
C(un)
Initialize S ← ∅
j ← 1
for i = 1 to k do
S ← S ∪ {ui}

end for
Return S

Time complexity. It takes at most O(m) to compute the cascading potential of each

node. Thus, the total running time is O(nm + n log n).

2.3.3 Adaptive Cascading Potential Algorithm

The Cascading Potential algorithm runs fast, but it neglects an important property of

the cascading failure: the overlapped impact of selected nodes. Let consider two nodes

u and v which both have failure impact on node z . If u is selected before v , then v has

no impact z as z is already failed. As a consequence, some nodes have high impact

initially will have small impact at the late of the selection process. We can improve the

performance of the algorithm by updating the impact of remained nodes on the fly. More

specifically, at the i th iteration, the impact (failure or load impact) of node u on failed

nodes (due to the selection of first i − 1 attacked nodes) will be subtracted from the

initial impact of u. After that, the node with highest remained impact will be selected.

The crucial problem is how to update the impact of nodes efficiently. We may

naively keep the list of impacted nodes for each node u. At each iteration, we compare

the list of impacted nodes and the set of failed nodes to update the subtract the impact

on failed nodes. This can result in Ω(n3) running time for each iteration which is very

time consuming. We reduce the updating time by reversing the process. Each node v

will keep two lists of nodes: the list FI [v] contains nodes which have failure impact on v

and the list LI (v) contains nodes which have load impact on v . Since the load impact

24

Algorithm 2 Adaptive Cascading Potential Algorithm
Require: A network G = (V ,E), an integer k
Ensure: A set S of k attacked nodes.

for each v ∈ V do
Initialize FI [v]← ∅, LI [v]← ∅

end for
for each u ∈ V do

Compute C(u)
for each v ∈ F ({u}) do
FI [v]← FI [v] ∪ {u}

end for
for each v : ∆Lu(v) > 0 and v /∈ F ({u}) do
LI [v][u]← ∆Lu(v)∑

z∈V−F ({u})(C(z)−L(z))

end for
end for
Initialize S ← ∅
for each u ∈ V do
Mark [u]← False

end for
for i = 1 to k do
u ← argmaxv∈V \F+(S){C(v)}
S ← S ∪ {u}
for each v ∈ F (S) do

if Mark [v] == False then
Mark[v]← True
for each u ∈ FI [v] do
C(u)← C(u)− 1/|V |

end for
for each u ∈ LI [v] do
C(u)← C(u)− CL[v][u]

end for
end if

end for
end for
Return S

of other nodes on v are different, we use LI [v][u] to store the load impact of u on v

after the normalization. When v is failed, the impact of nodes in its lists will be updated.

The crucial point is that each node only fails once, thus the running time is reduced

significantly. The algorithm with adaptive cascading potential is described in Algorithm 2.

25

Time complexity. Since each node has impact on at most n nodes, the total size of

all FI and LI lists are at most n2. The number of updates is bounded by the total size of

FI and LI lists. Therefore the total running time is O(nm + n2 + kn).

2.3.4 Fully Adaptive Cascading Potential Algorithm

On the line of cascading potential based algorithms, we continue to improve the

solution’s quality by spending more time to calibrate the cascading potential of nodes.

After a node u is attacked, the network state is changed with new failed nodes and

load updates; and this may decrease (as discussed in the proceeding part) or increase

the impact of a node. The failure of u adds load to many nodes and makes them more

vulnerable. Although the impact of a remained node v is deducted by the impact on

failed nodes, it can still increase since other nodes are easier to be failed. We can fully

update the cascading potential of each node as follows. After selecting a new node, we

simulate the cascading failure triggered by it and obtain a new graph of remained nodes.

In this graph, the load of a node is the load when the cascading process stops. We then

can evaluate the cascading potential of all nodes in the updated graph and select one

with highest value. We present the algorithm in Algorithm 3.

Algorithm 3 Fully Adaptive Centrality
Require: A network G = (V ,E) and an integer k .
Ensure: A set S of k attacked nodes.

Initialize S ← ∅
for i = 1 to k do

Compute the cascading potential of all nodes in G
Select u as the node with highest cascading potential
S ← S ∪ {u}
Update node loads and remove all failed nodes in G with the failure of u

end for
Return S

Time complexity. We need to compute the cascading potential of all nodes to

select a new one with time O(nm). Thus the total running time is O(kmn). However, the

26

algorithm may run much faster than the worst case time since the size of the updated

graph decreases when a new node is selected.

2.4 Cooperating Attack Algorithm

The key to connect the impact of multiple nodes in the above algorithms is the

load impact which is a connection link when the network is robust. In this case where

nodes are high failure tolerant, i.e., the gap between the capacity and load is big, the

failure impact of each node is small. Thus, nodes with high load impacts tend to be

selected.concentrate If the load of these nodes are scattered to many nodes, they

are not linked together to make other nodes fail. As a consequence, there are a large

number of nodes whose loads are increased, but there is only a few failed nodes. We

incidentally try to maximize the total load impact instead of the failure impact – the

objective function. We need a better strategy which builds a strong connection between

selected nodes to increase the number of failed nodes. To fulfill this goal, the new

strategy should satisfy following features:

• The redistributed load of selected nodes should be concentrated on certain nodes
to fail them. If early selected nodes redistributed load to a set of nodes, then later
selected nodes should also redistribute load to this set. It is said that selected
nodes are cooperating in redistributing load to make more nodes fail.

• Selected nodes should cooperate to make high load nodes fail. The failure of high
load nodes can expand the cascading failure further. However, if high load node
preference reduces the number of failed nodes, the new strategy should avoid
blindly favoring to fail high load nodes.

We design a new evaluation function, the efficiency, of nodes with properties that

tailor the selection process to embrace both desired features. Firstly, we give higher

evaluation to nodes which redistributes its load to load-increased nodes. If the failure of

u pushes an additional load ∆Lu(v) on v , then the impact of u on v is defined by:

γ(u, v) =
∆Lu(v)

C(v)− L(v)

27

when ∆Lu(v) + L(v) ≤ C(v). Since it requires C(v)− L(v) additional load to make v fail,

we can interpret that u makes a fraction ∆Lu(v)
C(v)−L(v) of v fail.

The new impact function implies that if the more load a node receives, the more

likely the new selected node will redistribute load on it. On the other hand, the evaluation

of u is higher if the loads of its neighbors are increased. This implication is stated in

Proposition 2.1.

Proposition 2.1. For any node v at two points of time, if v receives more load at the

second time point, i.e., L2(v) > L1(v), then the impact of other node u with the same

redistributed load ∆L is higher at the second time point: γ2(u, v) ≥ γ1(u, v).

Proof. We have:

γ2(u, v) =
∆L

C(u)− L2(u)
>

∆L

C(u)− L1(u)
= γ1(u, v)

Note that we assume u redistribute the same load on v in the Proposition 2.1, i.e.

the load of u is the same at two points of time. In fact, the load of u may increase due

to the selection of previous nodes, thus the evaluation of u even increases more at the

second point of time.

To fulfill the second feature, we assign higher values to high load nodes which are

impacted. The value of a node with load L is:

σ(L) =
eL

1 + eL

The function σ(L) is monotone increasing and in the range 0.5 ≤ σ(L) < 1. The

monotone increasing of the function shows the preference toward high load nodes.

Recall that the main goal is to increase the number of failed nodes, so even nodes with

the lowest load have the value at least half of the highest value nodes.

Next, we will define the efficiency of selecting u via the impact on v . Intuitively,

u makes γ(u, v) fraction of v fail and v has value of σ(L(v)), thus the efficiency of u

28

represented on v is:

λ(u, v) = γ(u, v)σ(L(v))

Finally, we obvious should take into account the number of failed nodes when

evaluating node u. The overall efficiency of u is the total of the number of failed and the

efficiency on unfailed nodes:

λ(u) = |F ({u})|+
∑

v∈V \F ({u})

λ(u, v)

The efficiency evaluation shows several notable properties which servers our design

goal as followings:

Increase the number of failed nodes first. If u makes z fail and has efficiency λ(u, v)

on the unfailed node v , then the contribution of z to the overall efficiency of u is always

higher than v since 1 ≥ γ(u, v)σ(L(v)).

Avoid redistributing load to impossible-to-fail nodes. If node v needs too much

additional load before failing, it will be ignored in efficiency evaluation of nodes as stated

in the Proposition 2.2.

Proposition 2.2. Given two nodes u and v with fixed load L(v), the efficiency of u on v

is monotone decreasing and goes to 0 when the capacity C(v) of v increases and goes

to infinity.

Proof. It is easy to see that γ(u, v) is monotone decreasing and goes to 0 when C(v)

increases and goes to infinity. In addition, σ(L(u)) is a constant, so the efficiency

λ(u, v) = γ(u, v)σ(L(v)) decreases and goes to 0.

Not favoring high load nodes with all cost. We consider the case the capacity is

linear to the load, a common setting in the reality to guarantee the safety of nodes.

In this case, even the load of node v is extremely large, it is still ignored as shown in

Preposition 2.3.

29

Proposition 2.3. Suppose that the capacity C(v) is linear to the load C(v) = T ∗ L(v)

with constant factor T . Then, the efficiency of any node u on v goes to 0 when the load

L(v) goes to infinity.

Proof. We have:
γ(u, v)σ(L(u)) = ∆Lu(v)

C(v)−L(v)
eL(v)

1+eL(v)

< ∆Lu(v)
(T−1)L(v)

The function goes to 0 when L(u) goes to infinity.

Based on the efficiency evaluation, we propose the Cooperating Attack (CA)

algorithm with the same manner of Fully Adaptive Cascading Potential algorithm. The

algorithm also selects nodes one by one. After updating the state of the network, the

node with highest efficiency is selected. The whole algorithm is described in Algorithm

4.

Algorithm 4 Cooperating Attack (CA) Algorithm
Require: A network G = (V ,E) and an integer k .
Ensure: A set S of k seed nodes.

Initialize S ← ∅
for i = 1 to k do

Evaluate the efficiency of all nodes in G
Select u as the node with the highest efficiency
S ← S ∪ {u}
Update node loads and remove all failed nodes G with the failure of u

end for
Return S

Time complexity. Similarly to the Fully Adaptive Cascading Potential algorithm, the

total running time is O(kmn).

2.5 Experimental Evaluation

In this section, we demonstrate the experimental results on both synthesized and

real power networks. We first test the performance of the proposed algorithms in the

comparison with current attacking strategies in the current literature [53, 54]. These

30

strategies sort nodes based on some criterion and select top k nodes as attacked

nodes. The sorting criteria are:

• Largest load (HL).

• Lowest load (LL).

• Highest percentage of failure (PoF). The percentage of failure of a node u is the
fraction of nodes is failed when u fails.

• Highest risk if failure (RIF). RIF of a node u is the ration between its load and the
total load of its neighbor nodes.

We omit the required redundancy of Wang et al. [54] since it provides the same

order of nodes as RIF. After that, we evaluate the robustness of networks under different

failure tolerance schemes to identify the suitable network design considering the effect

of cascading failures.

2.5.1 Datasets

Real network. We use the Western North American (WNA) power grid network [55]

with 4941 substations and 6594 transmission lines to run experiments. However, the

dataset is lacking of load and capacity information of nodes, thus we use the method

in [56] to assign the load and capacity for each node. The initial load of of node u is

given by L(u) = d(u)β where d(u) is the degree of u and α is a tunable parameter. This

assignment method is reasonable as the load of the node is shown to be scaled with its

degree [59]. Vertex capacities are assigned based on three different schemes.

Normal networks. In normal networks, the capacity C(u) of each node u is

proportional to its initial load L(u):

C(u) = T ∗ L(u)

where T is a constant representing the system tolerance. The higher T is, the more

endurance the network is under the cascading failure.

31

Safe networks. In safe networks, the node capacities are assigned in two phases.

First, the capacity C(u) of each node u is scaled as the normal network, i.e:

C(u) = T ∗ L(u)

Then, then capacities of all nodes are raised to satisfy the N−1 failure tolerance criterion

in which the failure of any node will cause no additional failed nodes. It means that any

node u will not fail when it receives the redistributed load from any of its neighbor. The

capacity of u will be:

C(u) = max{C(u), max
v∈N−(u)

{L(u) + w(v , u)L(v)}}

Scaled Safe networks. In contrast to safe networks, scaled safe networks are

formed by raising the node capacities to satisfy N − 1 failure tolerance criterion first, then

be scaled up later. In particular, the network is made safe by assigning the capacity of

each node u as:

C(u) = max
v∈N−(u)

{L(u) + w(v , u)L(v)}

Then scale up the capacity of u to C(u) = T ∗ C(u).

Synthesized Networks. We also run the experiments on synthesized networks

generated by Erdos-Renyi random network model [26]. Each network has 5000 vertices

with the average degree of 4 or 8. The other parameters of the network is generated

similar to above schemes.

2.5.2 The performance of Different Algorithms

We first compare the performance of proposed algorithms and the previous works.

We run experiments on networks with different system tolerance values and β = 1.

The results are shown in Fig. 2-3, 2-4, and 2-5. When networks have small tolerance

values, they are so vulnerable under any attacking strategy. The failure of one or two

nodes can lead to the failure of almost the whole network. On the other hand, when T

is high, the network can endure multiple attacks without failing. These figures also show

32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

A WSN network

 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

B Synthesized network (d = 4)

Figure 2-3. Vulnerability of WSN network under normal setting

that previous attacking strategies do not work well on safe networks. On safe networks,

the performance of FACP and CA algorithms are the best since they can adapt to the

change of network status to choose nodes for attacking. Additionally, when the network

is vulnerable, FACP shows better performance. Early attacked nodes push remaining

nodes to the boundary of failure. The redistributed load of later attacked nodes can

make them fail easily. The situation is changed when networks are robust. CA algorithm

33

optimizes the number of failed nodes at each iteration, so its produced seed set make

more nodes fail.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

A WSN network

 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

B Synthesized network (d = 4)

Figure 2-4. Vulnerability of WSN network under safety setting

2.5.3 Network Robustness Under Different Settings

We observed that scaled safe networks are more robustness than safe networks

and safe networks are stronger than normal networks. However, the first kind of

networks often has highest total of capacities while it has the same node load as the

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate
 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

A WSN network

 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

FACP
PACP

CP
POF
RIF
HL
LL

Cooperate

B Synthesized network (d = 4)

Figure 2-5. Vulnerability of WSN network under scaled safety setting

remained two networks. Thus, we set up the experiment to measure the robustness of

each kind of networks as follows. We first generate the safe network, then we choose a

suitable T value to generate normal and scaled safe network such that the total capacity

is the same. Fig. 2-6 shows that scaled safe network are the most robust one. Normal

and safe networks have very close robustness although the safe factor can help to avoid

the first attack. When multiple nodes are attacked, N-1 failure tolerance setting does

35

not help much. The failure of the first node makes some other nodes reach the failure

limit. Even a tiny additional load can make them fail and trigger a large cascading failure.

Therefore, we observe that the N-1 safe criterion does not protect power networks under

cascading attack.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

Safe Network
Normal Network

Scaled Safe Network

A WSN (T = 2,β = 1)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

Safe Network
Normal Network

Scaled Safe Network

B S4 (T = 1.6,β = 1)

Figure 2-6. Network robustness with different failure tolerance schemes

2.5.4 Vertex Load and Network Robustness

Now we vary the value of β and measure the robustness of networks under the

FACP attacking strategy. As illustrated in Fig. 2-7, the higher β is, the more vulnerable

the network is as the load is concentrated at a few nodes. These nodes become the

Achilles’ heel of the network. It suggests that we should distribute the workload of nodes

in networks to make them less vulnerable.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

β = 0.5
β = 1.0
β = 1.5

A WSN (T = 2,β = 1)

 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

β = 0.5
β = 1.0
β = 1.5

B S4 (T = 1.6,β = 1)

Figure 2-7. Network robustness under different load distribution

36

2.5.5 Network Topology and Network Robustness

We next evaluate the robustness of networks with different average degree.

As shown in Fig. 2-8, the network with higher average degree is more robust than

network with lower average degree. In the denser network, the load of a failed node is

redistributed to a larger number of neighbors. Each neighborhood node receives a small

fraction of the load, thus it can bear the additional load without failing.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

N
um

be
r

of
 F

ai
le

d
N

od
es

Number of Attacked Nodes

d = 4
d = 8

Figure 2-8. Network topology and robustness

2.6 Related Works

The cascading failure has attracted a lot of attention and been studied in various

perspective [6, 22, 30, 40, 46, 53, 54, 60]. The structural vulnerability of power networks

was studied in [6]. The authors showed that removing small fraction of highest degree

nodes significantly reduces the connectivity of the network. After that, Hines et al. [30]

studied the network vulnerability of different classes of scale-free networks including

Erdos-Renyi, preferential-attachment, and small-world networks. They showed that

different types of networks behave differently under node failures. There various models

of cascading failures were later proposed to vulnerability of networks under targeted

attack [7, 36, 53, 54]. However, these works mainly present different ranking methods

for nodes and select most critical nodes. These methods fail to address the effect of the

cascading process, hence miss to the most critical nodes.

37

2.7 Summary

In this chapter, we studied the critical node detection problem under load redistribution

cascading model. Based on the new centrality which considers the cascading effect

when evaluate the importance of nodes in networks, we develop various algorithms

to identify critical nodes: one is purely based on the new centrality, one is based on

partially adaptive centrality, and one is based on fully adaptive centrality. Among them,

the fully adaptive centrality algorithm continuously updates the centrality of nodes and

select the best one, hence achieves the highest performance among the three. However,

this algorithm suffers when the network is highly tolerant to the cascading failure. We

propose the cooperating attack algorithm which cooperates selected nodes to take down

protected nodes with high capacity. The performance guarantee of the cooperating

attack algorithm is supported by both theoretical and experimental results.

In addition, we use proposed algorithms to study the vulnerability of different safety

settings. We find that networks with low density is extremely vulnerable under the

cascading failure. In this kind of networks, the load of a failed node is redistributed to

a small number of neighbors and can fails them easily. On the other hand, the load is

shred to smaller portions in networks with high density. We also discover that even with

network of the same topology and total capacity and load, the network safety depends

a lot on the distribution of protection cost (the gap between the capacity and the load).

These shred the light on designing safe networks.

38

CHAPTER 3
CASCADING FAILURE OF NODES IN INTERDEPENDENT NETWORKS

In the development of technology, infrastructure networks are more and more

interdependent on each other to operate properly. To optimize the operation performance

and reduce the economic spend, these networks tend to utilize the support from

other ones. A typical example is the Smart Grid in which the power network uses the

communication network to exchange operational information and the communication

network uses the electricity from the power network to operate. In the meanwhile, such

growing interdependencies also dramatically impact the vulnerability of these networks

since a network is not only exposes to threats to themselves but also to the cascading

failures induced by from other networks. In a typical attacking point of view, an attacker

would first exploit the network weaknesses, and then only needs to target on some

critical nodes in either power networks or their interdependent communication networks,

whose corruptions bring the whole network down to its knees. In other words, nodes

from power networks depend heavily on nodes from their interdependent networks

and vice versa. Consequently, when nodes from one network fail, they cause nodes

in the other network to fail, too. For instance, an adversarial attack to any essential

Internet hosts, e.g. tier-1 ISPs such as Qwest, AT&T or Sprint servers, once successful,

may cause tremendous breakdowns to both millions of online services and the further

large-area blackout because of the cascading failures. A real-world example is the

wide-range blackout that affected the majority of Italy on 28 September 2003 [47],

which resulted from the cascading failures induced by the dependence between

power networks and communication networks. Therefore, in order to guarantee the

robustness of power networks without reducing their performance by decoupling them

from information systems, it is important to identify those critical nodes in interdependent

power networks, beforehand.

39

Figure 3-1. Example of Interdependent Power Network and Communication Network

There have been many studies assessing the network vulnerability [6, 8, 15, 27,

32, 45, 48]. Yet, these approaches are either designed only for single networks or

heavily dependent on configuration models of interdependent networks. The existing

approaches [5, 6, 8, 39] for single networks are based on various metrics, such as the

degree of suspected nodes or edges [6], the average shortest path length [5], the global

clustering coefficients [39], and the pairwise conductivity [6, 8] and so on. However,

when applying into interdependent networks, their performances drop tremendously

since these metrics fail to cast the cascading failures in interdependent networks. Later

on, other researchers [15, 27, 32, 45, 48] studied the vulnerability assessment on

interdependent networks, based on the size of largest connected component in power

networks after cascading failures. Although they showed the effectiveness of this new

metric, most of them focus on the artificial models of interdependent networks, i.e.,

random interdependency between networks, and ignore the detection of top critical

nodes in real networks.

Let us consider a simple example of interdependent networks in Fig. 3-1, which

illustrates a small portion of power network (lower nodes), communication network

(upper nodes) and their interdependencies (dotted links). When we only take the single

power network into account, the failure of u7 destructs the power network more than

that of u1 since the largest connected component is of size 6 ({u1, u2, ... , u6}) when u7

40

fails, which is smaller than 9 ({u2, ... , u10}) when u1 fails. However, if considering its

interdependence upon the communication network, the failure of u1 will destroy the

power network more than that of u7. This is because the failure of u1 causes the failure

of v1 in the communication network, which further fails v2, v3, and v4 since they are

disconnected from the largest connected component. Due to their interdependence of

the nodes v4 and u7 in the power network, these cascading failures finally result in the

largest connected component of the power network to be {u8, u9, u10} of size only 3. Yet,

the largest connected component remains the same as in a single power network after

the failure of u7. This example illustrates an important point that the role of one node

could be totally different between single and interdependent networks with respect to the

vulnerability assessment.

In this chapter, we investigate the vulnerability of interdependent networks when

the cascading failures happen based on the connectivity of nodes. When studying

interdependent networks, especially the power network and the communication network,

it is well known to assume that a node will failure when it is disconnected from the

largest connected component. Although the assumption does not capture the reality,

it contains a realistic meaning. In real world, when a node is disconnected the largest

connected component, it is almost removed from the source of power or information. In

this chapter, we study the problem in the context of power network and communication

network, but the results is applied for all systems that share the same cascading

mechanism.

The rest of the chapter is organized as follows. In Section 3.1, we introduce

the interdependent network model and the problem definition. After that, Section

3.2 includes the hardness and inapproximability results. The greedy framework is

proposed in Section 3.3, along with the centrality metric. The experimental evaluation is

illustrated in Section 3.4. The related work is presented in Section 3.6. Finally, Section

3.7 provides some concluding remarks.

41

3.1 Network Model and Problem Definition

In this section, we first introduce our interdependent network model and the

well-accepted model of cascading failure. Using these models, we study the Interde-

pendent Power Network Disruptor problem, to minimize the size of largest connected

components in the power network after cascading failures by selecting a certain number

of target nodes.

3.1.1 Interdependent Network Model

Considering an interdependent system, we abstract it into two graphs, Gs = (Vs ,Es)

and Gc = (Vc ,Ec), and their interdependencies, Esc . Gs and Gc represent the power

network and communication network respectively. Each of them has a set of nodes

Vs , Vc and a set of links Es , Ec , which are referred to as intra-links. In addition, Esc are

inter-links coupling Gs and Gc , i.e., Esc = {(u, v)|u ∈ Vs , v ∈ Vc}. A node u ∈ Vs is

functional if it is connected to the giant connected component of Gs and at least one of

its interdependent nodes in Gc is in a working state. The whole interdependent system is

referred to as I(Gs ,Gc ,Esc).

3.1.2 Cascading Failures Model

We use a well-accepted cascading failure model, which has been validated

and applied in many previous works [15, 27, 32, 45, 48]. Initially, there are a few

critical nodes failed in network Gs , which disconnects a set of nodes from the largest

connected component of Gs . Due to the interdependency of two networks, all nodes

in Gc only connecting to failed nodes in Gs are also impacted, and therefore stop

working. Furthermore, the failures cascade to nodes which are disconnected from the

largest connected component in Gc and cause further failures back to Gs . The process

continues back and forth between two networks until there is no more failure nodes.

3.1.3 Problem Definition

Definition 3 (IPND problem). Given an integer k and an interdependent system

I(Gs ,Gc ,Esc), which consists of two networks Gs = (Vs ,Es), Gc = (Vc ,Ec) along with

42

their interdependencies Esc . Let LGs(T) be the size of the largest connected component

of Gs after the cascading failures caused by the initial removal of the set of nodes

T ⊆ Vs in Gs . The IPND problem asks for a set T of size at most k such that LGs(T) is

minimized.

In the rest of the chapter, the pairs of terms interdependent, networks and coupled

networks, node and vertex, as well as edge and link, are used interchangeably.

3.2 Computational Complexity

In this section, we first show the NP-completeness of IPND problem by reducing

it from maximum independent set problem, which further implies that IPND problem is

NP-hard to be approximated within the factor 2− ε for any ε > 0.

Theorem 3.1. IPND problem is NP-complete.

Proof. Consider the decision of IPND that asks whether the graph Gs = (Vs ,Es) in an

interdependent system I(Gs ,Gc ,Esc) contains a set of vertices T ⊂ Vs of size k such

that the largest connected component in Gs [Vs \ T] after cascading failures is at most z

for a given positive integer z . Given T ∈ Vs , we can compute in polynomial time the size

of the largest connected component in Gs after the cascade failures when removing T

by iteratively identifying the largest connected component and removing disconnected

vertices in Gs and Gc . This implies IPND ∈ NP.

To prove that IPND is NP-hard, we reduce it from the decision version of the

maximum independent set (MIS) problem, which asks for a subset I ⊆ V with the

maximum size such that no two vertices in I are adjacent. Let an undirected graph

G = (V ,E) where |V | = n and a positive integer k ≤ |V | be any instance of MIS. Now

we construct the interdependent system I(Gs ,Gc ,Esc) as follows. We select Gs = G and

Gc to be a clique of size |Vs |. Since Gs and Gc have the same size in our construction,

to construct the interdependency between Gs and Gc , we randomly match each node in

Vs to some arbitrary nodes in Vc so as to form a one-to-one correspondence between

Vs and Vc . An example is illustrated in Fig. 3-2. We show that there is an MIS of size

43

at most k in G iff Gs in I(Gs ,Gc ,Esc) has an IPND of size n − k such that the largest

connected component in Gs after cascading failures is of size at most 1.

Figure 3-2. An example of reduction from MIS to IPND

First, suppose I ⊆ V is an MIS for G with |I | ≤ k . By our construction, the largest

connected component of Gs [I] has the size 1 since there is no more cascading failure in

the clique Gc . That is, Vs \ I is also an IPND of I(Gs ,Gc ,Esc).

Conversely, suppose that T ′ ⊆ Vs with |T ′| = n − k is an IPND of I(Gs ,Gc ,Esc),

that is, the largest connected component of Gs [Vs \ T ′] is of size 1. We show that

Vs \ T ′ is also an MIS of G . Since the failure of nodes in Gc will not cause any cascading

failure in Gs , the largest connected component of Gs [Vs \ T ′] is of size 1 iff Vs \ T ′ is an

independent set in Gs . That is, Vs \ T ′ is also an MIS of G .

As IPND is NP-complete, one will question how tightly we can approximate the

solution, leading to the theory of inapproximability. The inapproximability factor gives

us the lower bound of near-optimal solution with theoretical performance guarantee.

That said, no-one can design an approximation algorithm with a better ratio than the

inapproximability factor. Then, we show that the above reduction implies the (2 −

ε)-inapproximability factor for IPND in the following corollary.

Corollary 1. IPND problem is NP-hard to be approximated into 2− ε for any ε > 0.

Proof. We use the reduction in the proof of Theorem 3.1. Suppose that there is a

(2 − ε)-approximation algorithm A for IPND. Then A can return the largest connected

component in Gs of size less than 2 in our constructed instance if the optimal size is 1.

44

Thus algorithm A can be applied to solve MIS on G in polynomial time because this size

is integral. This contradicts to the NP-hardness of MIS.

3.3 Greedy Framework for IPND Problem

In this part, we present different algorithms to detect the top critical nodes using the

greedy framework, which has been illustrated as one of the most popular and effective

approaches to solve hard problems. The idea is to iteratively choose the most critical

node, whose removal degrades the functionality of the network as much as possible.

In detail, we propose three following different strategies to select a critical node in the

system at each iteration:

1) Select a node that maximizes the number of failed nodes after the cascading
failure.

2) Select a node that decreases the structural strength of the system as much as
possible. That is, when the number of removed nodes is large enough, the system
will become weak. Therefore, the number of failed nodes increases considerably
under the effect of cascading failures.

3) Select a node that not only increases the number of failed nodes but decreases the
structural strength as well.

In the rest of this section, we describe three algorithms corresponding to the above

strategies.

3.3.1 Maximum Cascading (Max-Cas) Algorithm

In maximum cascading (Max-Cas) algorithm, we iteratively select a node u that

leads to the most number of new failed nodes, i.e., the maximum marginal gain to

the current set of attacked nodes T . When a new node u fails, it results in a chain of

cascading failures. The number of new failed nodes, referred to as cascading impact

number, can be computed by simulating the cascading failures with the initial set T ∪{u}

on the interdependent system I as described in Section 3.1.2. However, the simulation

of cascading failures is time-consuming due to its calculation of cascading failures

45

between two networks. Each step in the cascading requires to identify the largest

connected component of each network.

To this end, we further improve the running time of our algorithm by reducing the

number of simulations. The idea is only to check potential nodes whose removal creates

at least one more failed node in the same network due to the cascading failures. That

is, this node (or its coupled node) disconnects the network which it belongs to, i.e., it (its

coupled node) is an articulation node of Gs (or Gc), which is defined as any vertex whose

removal increases the number of connected components in Gs (or Gc). The reason is

illustrated in the following lemma.

Lemma 1. Given an interdependent system I(Gs ,Gc ,Esc), removing a node u ∈ Vs from

the system causes at least one more node fail due to the cascading failure iff u (or its

coupled node v ∈ Vc) is an articulation node in Gs (or Gc).

Proof. If u is an articulation node of Gs , the removal of u will increase the number of

connected components in Gs at least to two. By the definition of cascading failures in Gs ,

all nodes disconnected from the largest connected component will be failed. Similarly,

when v is an articulation node of Gc , removing u causes v fail, then there is at least one

more nodes in Gc fail. After that, these nodes make coupled nodes in Gs fail as well. On

the other hand, if neither u nor v are articulation nodes, the removal of u only makes

v fail, and the rest of two networks are still connected, which terminates the cascading

failures.

According to this property, the proposed algorithm first identifies all articulation

nodes in both residual networks using Hopcroft and Tarjan’s algorithm [31]. Note

that this algorithm runs in linear time on undirected graphs, which is faster than one

simulation of cascading failures. Thus, the running time of each iteration is significantly

improved especially when the number of articulation nodes is small. Denote Max −

Cas(Gs ,T , {u}) as the impact number of u, Algorithm 5 describes the details to detect

critical nodes. In Algorithm 5, since it takes O(n) time to compute the cascading impact

46

number for each node and at most |A| < n articulation nodes will be evaluated, the

running time is O(kn2) in the worst case. In practice, the actual running time is much

less due to the small size of A, which is further illustrate in Section 3.4.

Algorithm 5 Max-Cas Greedy Algorithm
Input: Interdependent system I(Gs ,Gc ,Esc), an integer k
Output: Set of k critical nodes in T ∈ Vs
T ← ∅
for i = 1 to k do
As ,Ac ← set of articulation nodes of Gs and Gc respectively
A← {u ∈ Vs |u ∈ As ∨ ((u, v) ∈ Esc ∧ v ∈ Ac)}
if A ̸= ∅ then
u ← argmaxu∈AMax-Cas(Gs ,T , {u})
T ← T ∪ {u}

else
u ← any node in Vs \ T

end if
Update I[Vs \ T]

end for
Return T

3.3.2 Iterative Interdependent Centrality (IIC) Algorithm

As one can see, Max-Cas algorithm prefers to choose nodes that can decrease

the size of networks immediately. This can mislead the algorithm to select boundary

nodes and affect its efficiency for large k since the residual networks still remain

highly connected even many critical nodes have been removed. An alternative

strategy is to identify the hub nodes which plays a role to connect other nodes

together in the network. Actually, this strategy has been proved to be efficient in

single complex networks by Albert et al. [6], in which the removal of a small fraction

of nodes with highest degree centrality has been shown to fragmentize the network to

small components. However, since this centrality method is only for single networks,

the development of a new centrality measure is in an urgent need for interdependent

systems.

47

Intuitively, this new centrality measure is required to capture both the intra-centrality

(the centrality of nodes in each networks) and inter-centrality (the centrality formed

by the interconnections between two networks). Given an interdependent system

I(Gs ,Gc ,Esc), node u in Vs is more likely to be critical if its coupled node v ∈ Gc is

critical. Furthermore, when node u is considered as a critical node, its neighbors are

also more likely to become important since the failures of these nodes can cause u fail.

That said, the criticality of these nodes imply the criticality of their coupled nodes. To

capture this complicated relation in interdependent systems, we develop an iterative

method to compute the centrality of nodes, called Iterative Interdependent Centrality

(IIC). Initially, the centralities of all nodes in Gs are computed by the traditional centrality,

e.g., degree centrality, betweenness centrality, etc. After that, these centralities of

nodes in Gs are reflected to coupled nodes in Gc and the centralities of nodes in Gc are

updated based on the reflected values. The centralities of nodes in Gc continue to be

reflected on nodes of Gs and update centralities of these nodes. Two key points of IIC

are the updating function and the convergence.

3.3.2.1 Updating function

Considering the reflected values from the other network as the weight of nodes, we

modify the weighted degree as the updated centrality of nodes, which is defined as

C(u) = αw(u) + (1− α)
∑

v :(u,v)∈E

w(v)

dv

where w(·) is the reflected values (or the weight of nodes) and the reservation factor α

lying in the interval [0, 1]. The underlying reason we use weighted degree is that a node

is usually more critical if most of its neighbors are critical nodes. The reservation factor

shows that the importance of each node is not only dependent on the reflected values

from the other network, but also the role in its own network.

48

3.3.2.2 Convergence

Next, we show that the centralities of nodes can be computed based on matrix

multiplications and prove the convergence via this property. Let xt = [x tv s1 , x
t
v s2
, ... , x tv sn],

yt = [y tv c1 , y
t
v c2
, ... , y tv cn] be the normalized centrality vector after tth iteration of Gs and Gc .

Suppose that two interdependent nodes have the same position vectors xt and yt , i.e.,

v si and v ci are interdependent. Then, we have

x tu = αy t−1u + (1− α)
∑

v :(u,v)∈Es

y t−1v
dv
, ∀u ∈ Vs

y tu = αx t−1u + (1− α)
∑

v :(u,v)∈Ec

x t−1v
dv
, ∀u ∈ Vc

Note that if we divide these vectors by a constant, then they still represent the

centrality of nodes in the systems. Thus, after each iteration, these centrality vectors are

divided by some constants Cs and Cc which are chosen later to prove the convergence.

xt = xt/Cs , y
t = yt/Cc

Let Ms and Mc be n × n matrices such that

Msuv =

α if u = v

d−1v if (u, v) ∈ Es

0 otherwise

Mcuv =

α if u = v

d−1v if (u, v) ∈ Ec

0 otherwise

Then the relationship between xt and yt is rewritten as:

xt =
Msyt−1

Cs
, yt =

Mcxt−1

Cc

49

Therefore

xt =
MsMcxt−2

CsCc
=
Mxt−2

CsCc

where M = MsMc is called the characteristic matrix. Next, we analyze the condition

of this matrix to guarantee that xt converges by using the Jordan canonical form of M,

defined as follows.

Theorem 3.2 (Jordan Canonical Form [50]). Any n × n matrix M with n eigenvalues

|λ1| ≥ |λ2| ≥ ... ≥ |λn| can be represented as M = PJP−1 where P is an invertible matrix

and J is Jordan matrix which has form

J = diag(J1, ... , JP)

where each block Ji , called Jordan block, is a square matrix of the form

Ji =

λi 1

λi
. . .
. . . 1

λi

According to its above definition, the power of the matrix M can be computed as

follows

Mk = (PJP−1)k = PJkP−1

Hence, Mk converges when k → ∞ if and only if Jk converges. The powers of J is

computed via the powers of Jordan block Jk1 , Jk2 , ... , Jkp .

Jk = diag(Jk1 , ... , J
k
P)

50

where

Jki =

λki
(
k
1

)
λk−1i

(
k
2

)
λk−2i · · ·

(
k
di−1

)
λk−(di−1)i

λki
(
k
1

)
λk−1i · · ·

(
k
di−2

)
λk−(di−2)i

. . .

λki

Note that the powers of J converges if and only if the powers of all Jordan blocks

converge. Thus, we focus on the convergence of a block Jk as stated in the following

lemma.

Lemma 2. The convergence of a d × d Jordan block Ji depends only d and λi :

(1) If |λi | > 1 then Jki does not converge when k →∞.

(2) If |λi | < 1 then Jki converges to 0 when k →∞.

(3) If |λi | = 1 and λi ̸= 1, then Jki does not converge when k →∞.

(4) If λi = 1 and d = 1, then Jki =
[
1

]
.

(5) If λi = 1 and d > 1, then Jki does not converge when k →∞.

Proof. Cases (1), (3), (4), and (5) are trivial, thus we only show the proof for case (ii).

With |λi | < 1, every element of Jki has form
(
k
j

)
λk−ji which converge to 0 as k →∞.

According to this lemma, when normalized factors Cs , Cc satisfies CsCc = |λ1|, we

will have

(
M

CsCc

)t/2
x0 = P

(
J

|λ1|

)t/2
P−1x0

Clearly, xt will converge when
(
J

|λ1|

)t/2
converges. Then, we have the following

theorem.

Theorem 3.3. The centrality vector converges if and only if the characteristic matrix has

exactly one maximum magnitude eigenvalue.

To compute the converged centrality vector, we first choose α such that M has

λ1 > λ2. In practice, we choose α = 0.5 and centrality vectors always converge.

51

Although it seems necessary to compute the largest eigenvalue of M, we propose an

alternative method to avoid this time-consuming computation as follows. Suppose that

x2t converges to a vector x after t0 iterations i.e. x = Mt0x0

|λ1|t0 . Now we define the sequence

of vectors z0 = x0, zi+1 = Mzi
|Mzi |

, then:

zt0 =
Mt0z0∏t0−1
i=0 |Mzi |

=
Mt0x0∏t0−1
i=0 |Mzi |

It means that x = Azt0 where A is a scalar value. Therefore zt0 =
x

||x|| . Thus we can

compute the centrality vector using the recursive formula of z as described in Algorithm

6, then use this algorithm as sub-routine to detect critical nodes in Algorithm 7.

Algorithm 6 Iterative Interdependent Centrality
Input: Characterize matrix M and allowed error ϵ
Output: Centrality vector
x← 1
error ← +∞
while error > ϵ do
y← Mx
norm ← ||y||
y← y/norm
error ← ||y − x||
x← y

end while
Return x

Algorithm 7 IIC-based Algorithm
Input: Interdependent system I(Gs ,Gc ,Esc), an integer k
Output: Set of k critical nodes in T ∈ Vs
T ← ∅
for i = 1 to k do

α← 0.5, Compute M
ϵ← 10−8
Compute centrality vector x using Algorithm 6.
u ← argmaxVs\T x[u]
T ← T ∪ {u}
Update I[Vs \ T]

end for
Return T

52

Time Complexity: Since two matrices Ms and Mc have only (2|Es | + |Vs |) and

(|Ec |+ |Vc |) non-zero elements, the product Mx = MsMcx takes O(2|Es |+ |Vs |+ 2|Ec |+

|Vc |) time using sparse matrix multiplication. The convergence speed is |λ1|
|λ2| , thus the

number of iterations is O(log(1/ϵ)
log

|λ1|
|λ2|
). Therefore, the total running time to compute iterative

interdependent centrality is O((|Es + Ec |) log(1/ϵ)
log

|λ1|
|λ2|
). Thus, the total time to detect critical

nodes is O(k(|Es + Ec |) log(1/ϵ)
log

|λ1|
|λ2|
).

3.3.3 Hybrid Algorithm

Motivated by the advantages of Max-Cas and IIC algorithms, we further design a

hybrid algorithm by taking advantage of them. As one can see, Max-Cas only works

well when networks are loosely connected since it mainly aims to create as many failed

nodes as possible instead of making the network as weak as possible. On the other

hand, IIC algorithm can make the network weak but it does not work well as Max-Cas

when networks are loosely connected. Thus, the idea of hybrid algorithm is to remove as

many nodes as possible and make networks weaker in turn. That is, we use Max-Cas

and IIC algorithms in odd and even iterations respectively, as described in Algorithm 8.

Since the running time of IIC is much smaller than Max-Cas, its running time is about a

half of Max-Cas, which will be empirically shown in Section 3.4.

Algorithm 8 Hybrid Algorithm
Input: Interdependent system I(Gs ,Gc ,Esc), an integer k
Output: Set of k critical nodes in T ∈ Vs
T ← ∅
for i = 1 to k do

if i is odd then
Select u as Max-Cas algorithm

else
Select u as IIC algorithm

end if
T ← T ∪ {u}
Update I[Vs \ T]

end for
Return T

53

3.4 Experimental Evaluation

3.4.1 Dataset and Metric

In the experiment, we evaluate Max-Cas, IIC, and Hybrid algorithms, with respect

to the size of giant connected component (GCC) and the running time, on various

real-world and synthetic datasets.

In terms of power networks, we use both real Western States power network of the

US [55] with 4941 nodes and 6594 edges, and the synthetic scale free networks. This

network as well as other communication networks belong to a class of networks called

scale-free networks in which the number of nodes with degree d , denoted by P(d), is

proportional to d−β i.e., P(d) ∼ d−β for some exponential factor β > 0. According to

[9], power networks are found to have their exponential factors β between 2.5 and 4.

In order to do a more comprehensive experiment, we further generate more types of

synthetic power networks with different exponential factors, using igraph package [23].

In addition, due to the lack of data describing interdependencies between any

communication networks and the real-world power network, we use the synthetic

scale-free networks, representing communication networks, e.g. Internet, telephone

network, etc. Since most communication networks are observed to have the scale

free property with their exponential factors β between 2 and 2.6 [12, 57], we generate

communication networks with component factors of 2.2 or 2.6.

For the sake of coupling method, motivated by the observation from real-world

interdependent systems in [44], we develop a realistic and practical coupling approach,

Random Positive Degree Correlation Coupling (RPDCC) scheme. In this scheme, nodes

with high degrees tend to coupled together and so do nodes with low degrees, thus

the degree correlation of coupled nodes is positive as described in [44]. The detail of

RPDCC strategy will be discussed later in Section 3.5.

Finally, each experiment on synthesized systems is repeated 100 times to compute

the average results.

54

3.4.2 Performance of Proposed Algorithms

In order to show the effectiveness of our proposed algorithms, due to the intractability

of IPND problem and the time consumption to obtain optimal solutions, we focus on

comparing them with traditional centrality approaches which are often used in network

analysis [11], including degree centrality (DC), closeness centrality (CC), betweenness

centrality (BC) [13], and bridgeness centrality (BRC) [33]. In these approaches,

the k nodes of largest centralities in power networks are selected as critical nodes.

Particularly, we test our approaches on the following three types of datasets:

1) WS System: US Western states power network — Scale-free communication
network with β = 2.2.

2) SS System: Scale-free power networks with β = 3.0— Scale-free communication
network with β = 2.2.

3) Eq-SS System: Scale-free power and communication networks with the same
β = 2.6.

Here we choose the exponential factor β according to the real-world power networks

and communication networks, as mentioned above in 3.4.1.

Fig. 3-3 reports the comparison of performance between different approaches in

these three interdependent systems. In these figures, all of three proposed algorithms

outperform CC (the best traditional centrality approach) for any number of k critical

nodes. When k becomes larger, the interdependent systems have totally destroyed

by choosing these critical nodes using our algorithms, while more than 60% of nodes

remain intact if selecting nodes with highest traditional centralities. Especially in WS

interdependent system consisting of real-world US Western states power system, the

number of functional nodes remains nearly 5000 even 50 nodes are identified using CC,

whereas it is sufficient to destroy the whole system only by removing 20 nodes using

our Hybrid or Max-Cas approach. That is, these traditional approaches perform much

worse compared with our algorithms, especially when the number of attacked nodes

is large. Thus, the traditional methods cannot identify a correct set of critical nodes

55

in interdependent systems. The reason is that these approaches can only reflect the

importance of each node in single power networks rather than interdependent systems,

and they ignore the impact of cascading failures to interdependent systems.

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50

S
iz

e
of

 G
C

C

Number of removed critical nodes

DC
CC
BC

BRC
IIC

Hybrid
MAX-CAS

A

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Number of removed critical nodes

IIC
Hybrid

MAX-CAS

B

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

S
iz

e
of

 G
C

C

Number of removed critical nodes

DC
CC
BC

BRC
IIC

Hybrid
MAX-CAS

C

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Number of removed critical nodes

IIC
Hybrid

MAX-CAS

D

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

S
iz

e
of

 G
C

C

Number of removed critical nodes

DC
CC
BC

BRC
IIC

Hybrid
 MAX-CAS

E

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Number of removed critical nodes

IIC
Hybrid

 MAX-CAS

F

Figure 3-3. Performance Comparison on Different Interdependent Systems: WS System
(A, B), SS System (C, D), and Eq-SS System (E, F).

Comparing our three proposed approaches, as revealed in Fig. 3-3, IIC runs

fastest in spite of its worst performance, roughly 1000 times faster than Max-Cas in WS

interdependent system. We also notice that the performance of Max-Cas and Hybrid

56

algorithms is very close while Hybrid algorithm runs about 2 times faster than Max-Cas

algorithm. In particular, Max-Cas has better performance than Hybrid algorithm in

SS interdependent system, yet worse performance in the other two systems. This is

because the power network with β = 3.0 is very loosely connected and fragile in SS

interdependent systems. Thus, Max-Cas strategy can destroy the system quickly and

easily. However, since nodes are better connected in the other two systems, especially

Eq-SS, Hybrid algorithm is more efficient due to its strategy that makes networks weak

first and then destroys them. As illustrated in Fig. 3-3E, the performance of Hybrid is

lower than Max-Cas initially, but higher than Max-Cas when the networks get weak

enough. Additionally, in all of these systems, when the number of removed nodes reach

to a certain value, the whole system is failed. These numbers are about 20 for WS and

SS system and 40 for Eq-SS system. This shows that interdependent networks are

vulnerable, especially when loosely connected.

3.4.3 Vulnerability Assessment of Interdependent Systems

With the effectiveness of Hybrid algorithm observed through the above experiments,

we confidently use it to further assess the vulnerability of interdependent systems and

explore some insight properties.

3.4.3.1 Different coupled communication networks

We are interested in investigating the vulnerability of a certain power network

when it is coupled with different communication networks. First, we fix one synthetic

power network by generating a scale-free network with β = 3 according to [9]. The

coupled communication networks are also generated as scale-free networks, with their

exponential factors β between 2.5 and 2.7, as mentioned above. All generated networks

have 1000 nodes.

As illustrated in Fig. 3-4, the power networks tend to be more vulnerable when their

coupled communication networks are more sparse, i.e., with larger exponential factor

β. That is, it gives us an intuition that the power networks will become more vulnerable

57

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

S
iz

e
of

 G
C

C

Number of removed critical nodes

β = 2.5
β = 2.6
β = 2.7

Figure 3-4. The Vulnerability Of A Fixed Power Network

when their coupled networks are easy to be attacked. In particular, in order to destroy

the power networks, the numbers of critical nodes in them are 23, 17, and 11 when their

coupled communication networks have β = 2.5, β = 2.6 and β = 2.7, respectively,

which indicates some key thresholds to protect the function of power networks with the

knowledge of their interdependent networks.

3.4.3.2 Disruptor threshold

In this part, we evaluate an important indicator of the vulnerability, the disruptor

threshold which is the number of nodes whose removal totally destroys the whole

system. The smaller it is, the more vulnerable the system is. We would like to observe

the dependence of the disruptor threshold on the network size. Particularly, we generate

two scale-free networks with the same size and exponential factors β of 3.0 and 2.2,

corresponding to power and communication networks, then couple them using RPDCC

scheme.

As shown in Fig. 3-5, the disruptor threshold provided by all proposed algorithms

is small and increases slowly with respect to the growth of the network size. When the

network size is raised by 5 times, from 1000 to 5000 nodes, the disruptor threshold

only increases roughly 3 times. When the size of network is 5000, the disruptor

58

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

D
is

ru
pt

or
 T

hr
es

ho
ld

Size of networks

 IIC
 Hybrid

 MAX-CAS

Figure 3-5. The Disruptor Threshold with Different Network Sizes

thresholds of Max-Cas and Hybrid algorithms are roughly 51 and 57. This implies

that the removal of 1% number of nodes is enough to destroy the whole system. Even

the IIC algorithm needs to destroy only 1.5% fraction of nodes to break the system

down. Large interdependent systems seem to be extremely vulnerable under different

attack strategies due to the following reason. When the network size grows up, the

possibility that a high degree node is dependent on a low degree node also runs up.

As a result, it is easier to disable the functionality of high degree nodes which often

play an important role in the network connectivity. Therefore, the vulnerability of the

interdependent system needs to be reevaluated regularly, especially fast growing up

systems.

3.4.3.3 Different coupling schemes

Another interesting observation is to investigate the impacts of the way nodes are

coupled to the vulnerability of interdependent system. Apart from the RPDCC scheme,

we evaluate the robustness with other three coupling strategies, as follows:

1) Same Degree Order Coupling (SDOC): The nodes of i th highest degree in two
networks are coupled together.

2) Reversed Degree Order Coupling (RDOC): The node of i th highest degree in one
network is coupled with the node of i th lowest degree in the other network.

59

3) Random Negative Degree Correlation Coupling (RNDCC): A node of higher
degree in one network are randomly, with lower probability, to couple with another
node of higher degree nodes in the other network.

Note that the RNDCC scheme is the opposite strategy to the RPDCC scheme (in

Section 3.5). We test on the interdependent systems, consisting of a power network

with β = 3 and a communication network with β = 2.2 using the four different coupling

schemes. All networks have 1000 nodes.

Fig. 3-6 reports the vulnerability of power networks when coupling them with

communication networks in different manners. As one can see, SDOC provides the

most robust interdependent system, although it is not practical. The size of the remained

giant connected component decreases slowly when the number of removed nodes

increases. On the other hand, RDOC makes the system very vulnerable, which can

be destroyed by only removing 1 nodes from the power network. This is because

the nodes of lower degree in communication networks are very easy to be failed,

which, immediately, cause the failures to their coupled nodes of higher degree in

power networks. When many high degree nodes are removed, the network is easy

to be fragmented which leads to the destruction of the whole system shortly. The

interdependent systems with the other two schemes, RPDCC and RNDCC, illustrate

their robustness between those using SDOC and RDOC, due to the random factors

in RPDCC and RNDCC. Compared with RNDCC, systems coupled by RPDCC is

almost twice more robust because of its positive correlations. These results point out an

important principle that the higher correlation between the degrees of coupled nodes,

the stronger the interdependent system is. In other words, a node of high degree in

one network should not be coupled with a node of low degree in the other network;

otherwise, this node will be a weak point to attack.

3.5 RPDCC / RNDCC Coupling Schemes

In this section, we present the RPDCC scheme to randomly couple two networks

with positive degree correlation. Given two network Gs and Gc , we form two weighted

60

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

S
iz

e
of

 G
C

C

Number of removed critical nodes

SDOC
RPDCC
RNDCC

RDOC

Figure 3-6. Vulnerability Comparison using Different Coupling Schemes

Algorithm 9 Random weighted permutation
Input: A weighted set of n elements X = {x1, x2, ... , xn} with weights w(·)
Output: Weighted random permutation Y of X .
total ←

∑n
i=1 w(xi)

for i = 1 to n do
e ← a random selected element in X with probability w(e)/total
Y [i]← e; X ← X \ {e}; total ← total − w(e)

end for
Return Y

sets that contain vertices of Gs and Gc as elements and their degrees as weights. Then

we generate two random weighted permutations {v s′1 , v s
′
2 , ... , v

s′
n } and {v c ′1 , v c

′
2 , ... , v

c ′
n } of

nodes in Gs and Gc as described in in Algorithm 9, then v s′i is coupled with v c ′i , 1 ≤ i ≤ n.

In the following theorem, we show that a node of larger weight has smaller expected

index in each permutation, that is, nodes of high degrees in two permutations tend to

have low indices. In other words, this results in the positive correlation between degrees

of coupled nodes. (For RNDCC, we couple v s′i with v c ′n−i .)

Theorem 3.4. In the random weighted permutation, an element with bigger weight has

lower expected index than an element with smaller weight.

61

Proof. Let E(X , e) be the expected index of an element e in the random weighted

permutation. Then, we have:

E(X , e) =
w(e)∑
x∈X w(x)

+
∑

z∈X\{e}

w(z)∑
x∈X w(x)

(1 + E(X \ {z}, e)

Therefore, E(X , e1) ≤ E(X , e2) if w(e1) ≥ w(e2).

3.6 Related Works

Most of works on network vulnerability assessment are studied in single networks

[8, 10, 21, 29, 41]. The centrality measurements [11] are widely used, including degree,

betweenness and closeness centralities, average shortest path length [5], global

clustering coefficients [39]. Alternatively, Arulselvan et al. [8] first proposed the total

pairwise connectivity as an effective measurement, based on which they propose

the CND problem and designed a heuristic to detect critical nodes. The β-disruptor

problem was later defined by Dinh et al. [25] followed by pseudo-approximation

algorithms. Unfortunately, these approaches fail to accurately identify the critical nodes

on interdependent networks.

Recently, vulnerability assessment of interdependent networks was initiated by

Buldyrev et al. [15], and followed by a set of related papers [15, 27, 32, 45, 48]. These

works validated the size of largest connected component as an effective metric for

cascading failures, covering a wide range of the random failures [15], order percolation

phase transition [16, 27, 45] and exploitation of robustness under targeted attacks [32].

Their results illustrated that interdependent networks are much more vulnerable than

single networks. Unfortunately, these works heavily depend on configuration models

and, therefore, not applicable to real-world networks. And none of them proposed a

strategy to identify top critical nodes in interdependent networks.

3.7 Summary

In this chapter, we studied the optimization problem of detecting critical nodes to

assess the vulnerability of interdependent power networks based on the well-accepted

62

cascading failure model and metric, the size of largest connected component. We

showed its NP-hardness, along with its inapproximability. Due to its intractability,

we proposed a greedy framework with various novel centralities, which measures

the importance of each node more accurately on interdependent networks. The

extensive experiment not only illustrates the effectiveness of our approaches in networks

with different topologies and interdependencies, but also reveals several important

observations on interdependent power networks.

63

CHAPTER 4
INFLUENCE DIFFUSION IN MULTIPLE ONLINE SOCIAL NETWORKS

In the recent decade the popularity of online social networks, such as Facebook,

Google+, Myspace and Twitter etc., has created a new major communication medium

and formed a promising landscape for information sharing and discovery. On average,

Facebook users spend 7h:45 per person per month [4]; 3.2 billion likes and comments

are posted every day on Facebook [3]; 340 million tweets are sent out everyday

on Twitter [4]. Such engagement of online users fertilizes the land for information

propagation to a degree never achieved before in mass media. More importantly, OSNs

also inherit one of the major properties of real social networks- the word-of-mouth or

peer-pressure effect in which an individual’s opinion or decision is influenced by his

friends and colleagues. Due to the considerable impact of this effect on the popularity

of new products [14, 28], OSNs have rapidly become one of the most attractive choices

to rising the awareness of new products or brands as well as to reinforce the connection

between customers and companies. The crucial problem is how to find the smallest set

of influencers who can influence a massive number of users.

There is a considerable number of overlapping users among multiple OSNs which

creates a huge effect on the diffusion of information in these networks. When a user

joins multiple networks, s/he can relay the information from one network to another. Let

us consider the following typical scenario to illustrate this phenomenon. Jack, a user

of both Twitter and Facebook, logs in Twitter and knows about an excellent product

from his friend. He right away falls in love with the new product and eagerly shares the

information by tweeting it. Moreover, he configured his Twitter and Facebook accounts

as illustrated in Fig. 4-1 that allows him to automatically post on his Facebook’s wall

whenever he has a new tweet and vice versa. As the consequence, the product

information is exposed to his friends in both networks and the information further

spreads out on both the networks. If we only consider the information propagation in one

64

network, the reach of the information is estimated incorrectly and thus the influence of

users in these networks. In this case, the influence of Jack should be the combination

of his influence in both networks. As shown in Fig. 4-2, the fraction of overlapping

users is considerable, therefore studying the problem only in one network provides a

solution which is quite different from reality. This provides the motivation to study the

above problem on multiple networks where the influence of users is evaluated based on

multiple OSNs in which they participate.

Nearly all the existing works studied different variants of the massive influence

problem on a single network [18, 19, 34, 35, 37, 52, 61, 62]. Kempe et al. [34] first

formulated the influence maximization problem which asks to find a set of k users

who can maximize the influence. The influence is propagated based on a stochastic

process called Independent Cascade Model (IC) in which a user will influence his friends

with probability proportional to the strength of their friendship. The author proved that

the problem is NP-hard and proposed a greedy algorithm with approximation ratio of

(1 − 1/e). After that, a considerable number of works study and design new algorithms

for the problem variants on the same or extended models such as [18, 35]. There are

also works on the linear threshold (LT) model for influence propagation in which a

user will adopt the new product when the total influence of his friends surpass some

threshold. Feng et al. [62] showed NP-completeness for the problem and Dinh et al. [24]

proved the inapproximability as well as proposed efficient algorithms for this problem on

a special case of LT model. In their model, the influence between users are uniform and

a user is influenced if a certain fraction ρ of his friends are active.

Recently, researchers have started to explore multiple networks with works of Yagan

et al. [58] and Liu et al. [38] which study the connection between offline and online

networks. The first work investigates the outbreak of information using the SIR model

on random networks. The second one analyzes networks formed by online interactions

and offline events. The authors focus on understanding the flow of information and

65

A Auto post from Facebook to Twitter B Auto post from Twitter to Facebook

Figure 4-1. Auto update across social networks

Figure 4-2. The number of shared users between major OSNs in 2009 [2]

network clustering but not solving the massive influence problem. But these works do

not study any specific optimization problem of viral marketing. Shen et al. [49] explore

the information propagation on multiple online social networks taking into account the

interest and engagement of users. In their solution, all networks are combined into one

network by representing an overlapping user as a super node. This method cannot

preserve the individual networks’ properties.

In this chapter, we study the Massive Influence problem (MIP) which asks for a

set of users with minimum cardinality to influence a certain fraction of users in multiple

networks. Suppose that we know the participant of users overall networks, we exploit

the additional information of overlapping users to identify top influent ones over multiple

66

networks. Although the problem has been studied in a single network but those are

only special cases such as uniform influence between users in [24], etc. In addition, the

overlapping users introduce several new challenges, so the previous solutions cannot

be easily adopted. For example, how to evaluate the influence of overlapping users

across multiple networks? In which network, a user is easier to be influenced? We

introduce novel coupling schemes which combine multiple networks into one network

while retaining the influential properties of the original networks partially or fully. After

coupling the networks, we can exploit existing solutions on the single network to solve

the problem. This is a powerful and comprehensive procedure to study MIP. Moreover,

we propose a new metric called influence relay to analyze the flow of influence between

networks. Through comprehensive experiments, we discover crucial properties of the

multiple networks in diffusing the information.

The chapter is organized as follows. In Section 4.1, we present the influence

propagation model on multiple network and define the problem. We then introduce the

method to align nodes in networks in Section 4.2. After that, we introduces different

coupling schemes in Section 4.3 and 4.4. We next present the influence relay to study

the influence propagation process in Section 4.5. Section 4.6 shows experimental

results. In addition, we present coupling schemes for two stochastic cascading models

in Section 4.7. Finally, we summarize the chapter in Section 4.8.

4.1 Network Model and Problem Definition

4.1.1 Graph Notations

We consider k networks G 1,G 2, ... ,G k , each of which is modeled as a weighted

directed graph G i = (V i ,E i , θi ,W i). The vertex set V i = {u’s} represents the

participation of ni = |V i | users in the network G i , and the edge set E i = {(u, v)’s}

contains mi = |E i | oriented connections (e.g., friendships or relationships) among

network users. W i = {w i(u, v)’s} is the (normalized) weight function associated to

all edges in the i th network. In our model, weight w i(u, v) can also interpreted as the

67

strength of influence (or the strength of the relationship) a user u has on another user v

in the i th network. The sets of incoming and outgoing neighbors of vertex u in network

G i are denoted by N i−u and N i+u , respectively. In addition, each user u is associated with

a threshold θi(u) indicating the persistence of his opinions. The higher θi(u) is, the more

unlikely that u will be influenced by the opinions of his friends. Furthermore, the users

that actively participate in multiple networks are referred to as overlapping users. Those

users are considered as bridge users for information propagation across networks.

Finally, we denote by G 1...k the system consisting of k networks, and by U the exhaustive

set of all users U = ∪ki=1V i .

4.1.2 Influence Propagation Model

We first describe the linear threshold model (LT-model) [24, 62], a popular model

for information and influence diffusion in a single network, and then discuss how this

LT model can be extended to cope with multiple networks. In the original LT model,

each network user u is either in an active or inactive state: u is in an active state if he

originally adopts the information, or the total influence from his direct neighbors exceeds

his threshold θ(u), i.e,
∑
v∈N(u) w(v , u) ≥ θ(u). Otherwise, u is in an inactive state.

In a big picture, given a system of k networks, the information is propagated

separately in each network and can only be transferred from one network to another

via the overlapping users of these networks The information starts to spread out

from set of seed users S i.e. all users in S have active state and the remaining users

are inactive. At time t, a user u becomes active if the total influence from its active

neighbors surpasses its threshold in some network i.e. there exist i such that:

∑
v∈N i−u ,v∈A

w i(v , u) ≥ θi(u)

where A is the set of active users after time (t − 1).

After each time step, new inactive users are activated and they continue to activate

other users. The process will continue until there are no more inactive users can be

68

activated. If we limit the propagation time to d , then the process will stop after t = d

time steps. The set of active users caused by the seed set S after time d is denoted

as Ad(G 1...k ,S). Note that d is also the number of hops in networks up to which the

influence can be propagated from the seed set, so d is called the number of propagation

hops.

4.1.3 Problem Definition

In this chapter, we address the fundamental vulnerability problem on multiple

networks: the Massive Influence problem. The problem asks to find a seed set of

minimum cardinality which influences a large fraction of users, formally defined as

follows.

Definition 4. (Massive Influence Problem (MIP)) Given a system of k networks G 1...k

with the set of users U, a positive integer d , and 0 < β ≤ 1, the MIP problem asks to find

a seed set S ⊂ U of minimum cardinality such that the number of active users after d

hops according to LT model is at least β fraction of users i.e. |Ad(G 1...k ,S)| ≥ β|U|.

When k = 1, we have the variant of the problems on a single network which

NP-hard to solve [17] but it is easier to design heuristic algorithm on the single network.

In next sections, we present different coupling strategies to reduce the problem on

multiple networks to one on a single network in order to utilize the algorithm designing.

4.2 Network Alignment

We first reassign a universal identification (id) to each node in the networks such

that all overlapping nodes of the same user have the same id. Each network topology

often uses its own system for naming nodes, thus a person may have different ids

in different networks. As a consequence, it requires a complicated mechanism and

extra effort repeatedly to keep updating the user states across networks. We ease this

burden by assigning a unique id to each user and using it as the node id in all networks.

However, if we trivially assign new id to an unassigned node and its overlapping nodes

one by one, we need to scan all the overlap mappings each time which is almost

69

impractical in large networks. Thus, we need to design an algorithm which assigns new

ids in only linear time.

Our goal is to scan each overlap mapping and check each node once to assign

new ids. Instead of assigning ids to all overlapping nodes of a user at the same time,

we check whether one of its overlapping nodes is already assigned an id or not. To be

specific, we process each network in two phases: assign ids to nodes in its mapping

lists with the processed networks and then assign new ids to the remaining nodes. This

method guarantees the validity of new ids as stated in Lemma 3. The algorithm, as

described in Algorithm 10, scans each mapping and checks each node once, so the

total running time is linear in the total size of networks and overlap mappings.

Algorithm 10 Node-Alignment Algorithm
Require: k networks G 1...k and overlap mappings {Cij}.
Ensure: A new id mapping for nodes in G 1...k .

1: newid ← 0
2: Initialize id mappingM
3: for i = 1 to k do
4: for j = 1 to i − 1 do
5: for each pair (u, v) ∈ Cij do
6: M[u] =M[v]
7: end for
8: end for
9: for each u ∈ V i do

10: if u is unassigned then
11: M[u] = newid
12: newid ← newid + 1
13: end if
14: end for
15: end for
16: Return M

Lemma 3. Node-Alignment Algorithm assigns the same id to all overlapping nodes of

the same user and different ids to nodes of different users.

70

Proof. Let u i1, u i2, ... , u il be overlapping nodes of user u in networks i1 < i2 < ... < il , then

M[u il] =M[u il−1] = ... =M[u i1] due to the line 6 of the algorithm. Thus, all overlapping

nodes of user u have the same id.

Next, consider two overlapping nodes u i and v j of users u and v . Denote u i0 (v j0)

as overlapping nodes of u (v) in network i0 (j0) with the smallest index. Without loss of

generality, suppose that u i0 is assigned an id after v j0. Due to the property of u i0, it does

not appear in any overlap mapping with previous networks, hence it is assigned with a

new id. Thus, u i0 and v j0 have different ids; so are u i and v j .

4.3 Lossless Coupling Schemes

In this section, we present two schemes to couple multiple networks into a new

single network with respect to the influence diffusion process on each participant

network. A notable advantage of this newly coupled graph is that we can use any

existing algorithm on a single network to produce the solution on multiple networks

with the same quality. Unfortunately, we encounter a series of the challenging issues in

designing such coupling schemes:

(1) The heterogeneity of user participation. A user may join in one, two, or more
networks. How can we recognize and differentiate these users in the coupled
network? How to capture the roles of each user on the multiple networks?

(2) The process of information and influence propagation among networks. In multiple
networks, when a user is influenced he tends to immediately propagate the
information on all networks that he is a part of. How can we describe this
immediate transmission of the information between networks in just a single
network?

(3) Preserving properties of individual networks. The coupled network should be a
good representative of all the individual networks. It should preserve the diffusion
properties of all the networks. That enable us to establish the relationship between
solution of the problem on the coupled network and the original networks. How can
we design a coupling scheme that addresses this issue?

Next, we present the method to overcome these challenges. The first issue is

solved by introducing dummy nodes for each user u in networks that it does not belong

71

to. These dummy nodes are isolated. Now the vertex set V i of i th network can be

represented by V i = {u i1, u i2, ... , u in} where U = {u1, u2, ... , un} is the set of all users. In

the new representation, there is an edge from u ip to u iq if up and uq are connected in G i .

Now we can union all k networks to form a new network G . The approach to overcome

the second challenge is to allow nodes u1, u2, ... , uk of an user u to influence each other

e.g. adding edge (u i , uj) with weight θ(uj). When u i is influenced, uj is also influenced in

the next time step as they are actually a single overlapping user u, thus the information

is transferred from network G i to G j . But an emerged problem is that the information is

delayed when it is transferred between two networks. Right after being activated, u i will

influence its neighbors while uj needs one more time step before it starts to influence

its neighbors. It would be better if both u i and uj start to influence their neighbors in the

same time. For this reason, new gateway node u0 is added to G such that both u i and

uj can only influence other nodes through u0. In particular, all edges (u i , v i) ((uj , z j)) will

be replaced by edges (u0, v i) ((u0, z j)). In addition, more edges are added between u0,

u i , and uj to let them influence each other. We describe the coupling schemes next and

how we can couple the multiple networks preserving their individual properties.

4.3.1 Clique Lossless Coupling Scheme

Given k networks G 1, G 2, ..., G k with the set of users U, we construct a new graph

G = (V ,E , θ,w) as follows.

Firstly, we add dummy vertices of threshold 1 to all these networks and include all

nodes into vertex set V together with gate way nodes V = ∪ki=1V i ∪ {u01 , u02 , ... , u0n}.

In the new vertex set, u01 , u02 , ... , u0n represents the set of users in the coupled network

and are called user vertices. Vertex u ip called the account vertex of user up in G i . The

thresholds of the former type of vertices are set to θ(u0p) = 1, 1 ≤ p ≤ n, and the

thresholds of the later type vertices are kept the same with the one in multiple networks

i.e. θ(u ip) = θi(up).

72

Secondly, we represent the influence of user u on user v in network G i by the

influence of user vertex u0 on the account vertex of v in G i . It means that if there is an

edge between user u and v in G i , then an edge from u0 to v i with weight w(u0, v i) =

w i(u, v) is added to the edge set E .

Finally, we connect user vertex and account vertices of the same user to guarantee

that they have same activation states. The goal is that if one of these nodes is active, it

will activate all other nodes. It can be done by adding extra edges called synchronization

edges between these nodes whose weights equal to the thresholds of destination

nodes. Specifically, w(u i , uj) = θ(uj), ∀0 ≤ i , j ≤ k , i ̸= j . These synchronization

edges form a clique between nodes, thus this coupling scheme is named clique lossless

coupling scheme. A simple example of the scheme is illustrated in Figure 4-3.

Next we will show that the propagation process in the original multiple networks and

the coupled network is actually the same. Influence is alternatively propagated between

user and account vertices, so problem with d hops in the multiple networks is equivalent

to problem with 2d hops in the coupled network.

Lemma 4. Suppose that the the propagation process on the coupled network G starts

from the seed set which contains only user vertices S = {s01 , ... , s0p}, then user vertices is

only activated in even propagation hops.

Proof. Suppose that a user vertex u0 is the first user vertex that is activated at the odd

hops 2d + 1. u0 must be activated by some vertex u i and u i is the the first activated

vertex among vertices u1, u2, ... , uk . It means that u i is activated in hop 2d . Since all

incoming neighbors of u i is user vertices, some user vertex changes its status to active

in hop 2d − 1. It is contradicted.

Lemma 5. Suppose that the the propagation process on G 1...k and G starts from the

same seed set S , then following conditions are equivalent:

(1) User u is active after d propagation hops in G 1...k .

73

A Multiple networks G 1,G 2,G 3 with 6 users where
vertices with the same color represent the same user.
Each user may have different thresholds in different
networks, e.g., red user has thresholds of 0.6, 0.3, and
0.8.

B The influence between users in multiple networks are en-
coded by the influence from user vertices to account vertices.
Dummy account vertices are added to guarantee that all users
have the same number of account vertices.

C Clique Synchronization

Figure 4-3. An example of lossless coupling scheme

74

(2) There exists i such that u i is active after 2d − 1 propagation hops in G .

(3) Vertex u0 is active after 2d propagation hops in G .

Proof. We will prove this lemma by induction. Suppose it is correct for any 1 ≤ d ≤ t,

we need to prove it is correct for d = t + 1. Denote A1...k(t) and A(t) as the set of active

users and active vertices after t propagation hops in G 1...k and G , respectively.

(1) ⇒ (2): If user u is active at time t + 1 in G 1...k , it must be activated at some

network G j . We have: ∑
v∈N j−u ∩A1...k(t)

w j(v , u) ≥ θj(u)

Due to the induction assumption, for each v ∈ A1...k(t), we also have v 0 ∈ A(2t) in

G . Thus: ∑
v0∈N−

uj
∩A(2t)

w(v 0, uj) =
∑

v∈N j−u ∩A1...k(t)

w j(v , u) ≥ θj(u) = θ(uj)

It means that uj is active after (2(t + 1)− 1) propagation hops.

(2) ⇒ (3): If there exists i such that u i is active after 2(t + 1) − 1 propagation hops

on G , then u i will activate u0 in hop 2(t + 1)

(3) ⇒ (1): Suppose that u0 /∈ S is active after 2(t + 1) propagation hops in G , then

there must exists uj which activates u0 before. This is equivalent to:

∑
v∈N−

uj
,v∈A(2t)

w(v , uj) ≥ θ(uj)

For each v ∈ A(2t), we also have v ∈ A1...k(t). Replace this into the above

inequality we have: ∑
v∈N j−u ∩A1...k(t)

w j(v , u) =
∑

v0∈N−
uj
∩A(2t)

w(v 0, uj)

≥ θ(uj) = θj(u)

Thus, u is active in network G j after t + 1 propagation hops.

75

Next, we will show that the number of influenced vertices in the coupled networks

is always (k + 1) times the number of influenced users in multiple networks as stated in

Theorem 4.1.

Theorem 4.1. Given a system of k networks G 1...k with the user set U, the coupled net-

work G produced by the lossless coupling scheme, and a seed set S = {s1, s2, ... , sp}, if

Ad(G 1...k ,S) = {a1, a2, ... , aq} is the set of active users caused by S after d propagation

hops in multiple networks, then A2d(G ,S)= {a01, a11, ... , ak1 , ..., a0q, a1q, ... , akq} is the set of

active vertices caused by S after 2d propagation hops in the coupled network.

Proof. For each user ai ∈ Ad(G 1...k ,S) i.e. ai is active after d hops in G 1...k , then

there exists aji which is active after 2d − 1 hops in G according to the Lemma 5. As

a consequence, all a0i , a
1
i , ... , a

k
i are active after 2d hops. So B = {a01, a11, ... , ak1 , ...,

a0q, a
1
q, ... , a

k
q} ⊆ A2d(G ,S).

Let consider a vertex of A2d(G ,S) which is:

Case 1. A user vertex u0 which is active after 2d hops in G , so vertex u must be

active after d hops in G 1...k . This implies u ∈ Ad(G 1...k ,S), thus u0 ∈ B.

Case 2. An account vertex u i . If u i is active after 2d − 1 hops, then u must be active

after d hops due to Lemma 5, thus u ∈ Ad(G 1...k ,S). Otherwise, u i is activated at hop 2d

, it must be active by some vertex uj , j > 0 since all user vertices only change their state

at even hops. Again, u ∈ Ad(G 1...k ,S). This results in u i ∈ B.

From two above cases, we also have A2d(G ,S) ⊆ B. So that A2d(G ,S) = B, the

proof is completed.

Theorem 4.1 provides the basis to derive the solution for MIP on multiple networks

from the solution on a single network. It implies an important algorithmic property of the

lossless coupling scheme regarding to the relationship between the solutions of MIP in

G 1...k and G . The equivalence of two solutions is stated below:

76

Theorem 4.2. When the lossless scheme is used, the set S = {s1, s2, ... , sp} influences

β fraction of users in G 1...k after d propagation hops if and only if S ′ = {s01 , s02 , ... , s0p}

influences β fraction of vertices in coupled network G after 2d propagation hops.

Size of the coupled network. The size of the coupled network can be computed

from the sizes of the original networks as follows:

Proposition 4.1. When the lossless scheme is used, the coupled network has |V | =

(k + 1)|U| = (k + 1)n vertices and |E | =
∑k
i=1 |E i |+ nk(k + 1) edges.

Proof. In the coupling scheme, each user u has k+1 corresponding vertices u, u1, ... , uk

in the coupled network, thus the number of vertices is |V | = (k + 1)|U| = (k + 1)n.

The number of edges equals the total number of edges from all input networks plus

the number of new edges for synchronizing. Thus the total number of edges is |E | =∑k
i=1 |E i |+ nk(k + 1).

4.3.2 Star Lossless Coupling Scheme

In clique lossless coupling scheme, the number of edges to synchronize the state of

vertices u0, u1, ... , uk is k(k+1) for each user u, which results in nk(k+1) extra edges in

the coupled network. In real networks, the number of edges is often linear to the number

of vertices, so the number of extra edges considerably increases the size of the coupled

network, especially when k is large. We would like to design a synchronization strategy

that reduces these extra edges.

Note that the large number of extra edges is due to the direct synchronization

between every pairs of account vertices of u in clique lossless coupling scheme, so

we can save some edges by using indirect synchronization. We create one more

intermediate vertex uk+1 with threshold θ(uk+1) = 1 and let the active state propagate

from any vertex in u1, u2, ... , uk via this vertex. Specifically, the synchronization edges

are established follows: w(u i , uk+1) = 1 and w(uk+1, u i) = θ(u i) 1 ≤ i ≤ k ; w(uk+1, u0) =

w(u0, uk+1) = 1. The synchronization strategy of star lossless coupling scheme is

77

Figure 4-4. Star Synchronization

illustrated in Fig. 4-4. Now, the number of extra edge for each user is 2(k + 1) and the

size of the coupled network is reduced to:

Proposition 4.2. When star lossless scheme is used, the coupled network has |V | =

(k + 2)|U| = (k + 2)n vertices and |E | =
∑k
i=1 |E i |+ 2n(k + 1) edges.

In star lossless coupling scheme, it takes 2 hops to synchronize the states of

account vertices of each user which leads to delaying the propagation of influence in the

coupled network. Due to the similarity between star lossless scheme and clique lossless

scheme, we state the following property of star lossless scheme without proof.

Theorem 4.3. When star lossless coupling scheme is used, the set S = {s1, s2, ... , sp}

influences β fraction of users in G 1...k after d propagation hops if and only if S ′ =

{s01 , s02 , ... , s0p} influences β fraction of vertices in coupled network G after 3d propagation

hops.

4.4 Lossy Coupling Schemes

In the preceding coupling schemes, a complicated coupled network is produced

with a large number of auxiliary vertices and edges. It is ideal to have a coupled network

which only contain users as nodes. This network provides a compact view of the

relationship between users crossing the whole system of networks. To compact the

78

information which is completely described by the whole system into one network, the

loss of information is unavoidable. The goal is to design a scheme such that minimize

the loss as much as possible i.e. the solution for the problem in the coupled network is

very closed to one in the original system. Next, we present such scheme based on the

following key observations.

Observation 1. Consider user u, u will be activated if there exists i such that:

∑
v i∈N−

ui
,v∈A

w i(v i , u i) ≥ θi(u)

where A is the set of active users.

We can relax the condition to activate u with positive parameters α1(u), α2(u), ...,

αk(u) as follows:
k∑
i=1

(αi(u)
∑

v i∈N−
ui
,v∈A

w i(v , u)) ≥
k∑
i=1

αi(u)θi(u i) (4–1)

Proposition 4.3. Given a system of networks G 1...k , if the condition (4–1) is satisfied,

then user u is activated.

Proof. When the condition is satisfied, there must exist i such that αi(u)
∑
v i∈N−

ui
,v∈A w

i(v , u) ≥

αi(u)θi(u). As a consequence, the condition to activate u is satisfied since αi(u) > 0

Note that sometimes the condition to activate u is met, but the condition (4–1) is still

need more influence from u’s friends to satisfy. The more this extra influence need is,

the looser condition (4–1) is. We can reduce this redundancy by increasing the value

of αi(u) proportional to the value of
∑
v i∈N−

ui
,v∈A w

i(v , u) − θi(u). In the special case,

if
∑
v i∈N−

ui
,v∈A w

i(v , u) > θi(u) and we choose αi(u) ≫ αj(u), ∀j ̸= i , then there is no

redundancy. Unfortunately, we do not know before hand in which network user u will be

activated, so we can only choose parameters heuristically.

Observation 2. When user u participates in multiple networks, it is easier to

influence u in some network than the others. The following simple case illustrate

such situation. Suppose that we have two networks.In network 1, θ1(u1) = 0.1 and

79

Figure 4-5. Lossy coupled network using easiness parameters. The number of edges is
much less than the lossless coupled network.

u1 has 8 in-neighbors, each neighbor v 1 influences u1 with w 1(v 1, u1) = 0.1. In

network 2, θ2(u2) = 0.7 and u2 has 8 in-neighbors, each neighbor v 2 influences u2

with w 2(v 2, u2) = 0.1. The number of active neighbors to activate u is 1 and 7 in network

1 and 2, respectively. Intuitively, we can say that u is easier to be influenced in the first

network. We quantify the influence easiness ϵi(u) that u is influenced in network i as the

ratio between the total influence from friends and the threshold to be influenced.

ϵi(u) =

∑
v i∈N−(ui) w

i(v i , u i)

θi(u i)

We can use the influence easiness of a user in networks as the parameters of the

condition 4–1.

Based on above observations, we couple multiple networks into one using

parameters {αi(u)}. The vertex set is the set of users V = {u1, u2, ... , un}. The threshold

of vertex u is set to:

θ(u) =
k∑
i=1

αi(u)θi(u i)

80

The weight of the edge (v , u) is:

w(v , u) =

k∑
i=1

αi(u)w i(v i , u i)

where w i(v i , u i) = 0 if there is no edge from v i to u i in i th network.

Then the set of edges is E = {(v , u)|w(v , u) > 0}. Fig. 4-5 illustrates the loosy

coupled network of the system of network in Fig. 4-3.

Besides the easiness, other metrics can be used with the same purpose. We

enumerate here some other metrics.

Involvement. Nodes can be part of multiple social networks, but typically they are

more involved in a few of them compared to others. We estimate involvement of a node

v in a network Gi by measuring how strongly the 1-hop neighborhood v is connected

and to what extent influence can propagate from one node to another in the 1-hop

neighborhood. Formally we can define involvement of a node v in network Gi as:-

σiv =
∑

x ,y∈{N i (v)∪v}

w i(x , y)

θiy

where N i(v) is the set of all neighbors of v (both in-coming and out-going), w i(x , y)

is the wt of edge (x , y) and θiy is the threshold of y in Gi .

Average. This a baseline scheme just used for comparison purposes. We just take

an average of the thresholds and edge-wts over all the networks, in which v belongs. So

average of a node v in network i can be defined as

αiv =
1

|P(v)|

Next we show the relationship between the solution for the influence maximization

problem in the lossy coupled network and the original system of networks. As discussed

in the above observations, if the propagation process starts from the same set of users

in the network system G 1...k and the coupled network, then the active state of a user in

G implies its active state in G 1...k . It means that if the set of users S activates β fraction

81

of users in G , it also activates at least β fraction of users in G 1...k . We have the following

result.

Theorem 4.4. When the lossy coupling scheme is used, if the set of users S activates β

fraction of users in G , then it activates at least β fraction of users in G 1...k .

4.5 Influence Relay

We propose the influence relay metric to quantify the role of users in propagating

information. When the information is diffused in multiple networks, the information may

flow within a single network or go through two or more networks. This brings out a series

of concerns: how much information flows inside a network? how much information

flows from one network to another? how much is the contribution of each network in

the influence propagation? Once we can quantify these values, we can get insights into

the influence diffusion process in multiple networks. Next, we define the influence relay

metric and related concepts to measure these values.

Since we can use a single network to simulate the diffusion process in multiple

networks, we first can measure the information flowing through each node in a single

network. Suppose that the information breaks out from the seed set S in the network

G , and stops after d hops with the set of influenced vertices Ad(G ,S). Intuitively, the

influence relay of each vertex is the amount of influence it relays to other nodes after

adopting the information. The more number of vertices it helps to influence, the higher

its influence relay is. In addition, if it has strong influence on a node with high relay

influence, it should also have high value of relay influence even it does not directly

influence many vertices. For these reasons, we formally propose the influence relay

metric IR(·) which is computed iteratively as below.

All inactive vertices have the influence relay of 0.

Each active vertex v without activated outgoing neighbors has the influence relay

of 1. v does not activate any vertices, but it contributes itself as one active node to

Ad(G ,S).

82

The influence relay of any other vertex u is computed based on the influence relay

of its outgoing active neighbors. Specifically, the influence relay of u is:

IR(u) = 1 +
∑

v∈N+u ∧h(u)<h(v)

w(u, v)IR(v)∑
z∈N−

v ∧h(z)<h(v) w(z , v)
(4–2)

where h(u) is the hop at which u is activated.

In this formula, the influence relay of u is the total influence relay of vertices which

are under u’s influence. However, each vertex v of these ones is under the influence of

many vertices. Among them, u contributes the impact of w(u, v) to influence v , hence u

is responsible for only w(u,v)∑
z∈N−v ∧h(z)<h(v) w(z ,v)

of v ’s influence relay. Moreover, we add 1 to the

influence relay of u since u also contributes itself to the set of activated vertices.

We next present an efficient algorithm to compute the influence relay of all vertices.

Since the influence relay of each node depends on its out-going neighbors which are

activated later than it, we need to compute the influence relay of nodes in the reverse

order of the diffusion process. We can construct the influence graph IGS = (VS ,ES)

from the seed set S to represent the diffusion process and compute the influence relay

of all nodes in VS . The vertex set VS of nS nodes is Ad(G ,S). There is an edge from u

to v in ES with the same weight w(u, v) in G if u has passed the information to v , i.e.,

u, v ∈ Ad(G ,S) and h(v) > h(u). The graph IGS is a directed acyclic graph, thus we can

compute the influence relay of all vertices in the reverse topological ordering of IGS as

described in CIR algorithm (Algorithm 11).

Proposition 4.4. The influence graph IGS caused by the seed set S in the network G is

a directed acyclic graph.

Proof. If IGS has a cycle u1, u2, ... , ut , u1, then h(u1) < h(u2) < ... < h(ut) < h(u1)

(contradicted).

83

Algorithm 11 Computing Influence Relay (CIR)
Require: A network G , a seed set S and the number of hops d .
Ensure: The influence relay IR of all vertices.
IGS ← The influence graph caused by S on G
for each u ∈ VS do
IR(u)← 0

end for
Compute the topological ordering u1, u2, ... , unS of vertices in VS
for i = nS down to 1 do
IR(ui)← IR(ui) + 1
total ← 0
for each v ∈ N−(ui) do
total ← total + w(v , ui)

end for
for each v ∈ N−(ui) do
IR(v)← IR(v) + w(v ,ui)IR(ui)

total

end for
end for
Return IR

Lemma 6. The CIR algorithm produces the influence relay for each activated vertex.

Proof. We use induction to prove that the influence uk is computed correctly after the

loop i = k . Firstly, un is computed first and IR(un) = 1. This is correct since un is at the

end of the topological ordering and does not have any activated outgoing neighbors.

Now, suppose that the influence relay of un, un−1, ... , uk+1 is computed correctly after

the loop i = k + 1, we will prove that IR(uk) holds the influence relay of uk after the

loop i = k . Let {ui1, ui2, ... , uip} be the set of activated outgoing neighbors of uk which is

activated later than uk . Due to the construction of IGS , (uk , ui1), (uk , ui2), ... , (uk , uip) are

edges in IGS , hence iq > k , 1 ≤ q ≤ p, in the topological ordering. After the i = iq loop,

IR(uk) will receive a value of w(uk ,uiq)IR(uiq)∑
z∈N−uiq

∧h(z)<h(uiq)
w(z ,uiq)

from the influence relay of uiq . At loop

i = k , IR(uk) is increased by 1 for uk itself and equals the influence relay of uk according

to the Eq. 4–2.

84

Time complexity. The topological ordering of a directed acyclic graph can be

computed in linear time and the number of updates in the main loop equals to the

number of edges of IGS , so the CIR algorithm runs in linear time.

A crucial property of the new metric is that the total influence relay of seed vertices

reflects the influence of the seed set as stated in Theorem 4.5.

Theorem 4.5. The total influence relay of seeding vertices equals the total number of

activated vertices. ∑
u∈S

IR(u) = |Ad(G ,S)|

Proof. The proof is based on an invariant of variables IR(u1), ... , IR(un) in CIR

algorithm. The information is propagated from the seed set, thus all seed vertices

do not have incoming neighbors in IGS and occupy smallest indices in the topological

ordering. Let up be the highest index seed vertex. We will prove that after the loop

i = k + 1 we have:
k∑
j=1

IR(uj) = nS − k , ∀p ≤ k ≤ nS

Before the loop i = n, it is obviously true. After the loop i = k , the value of variable

IR(uk+1) is increased by 1 and redistributed to its incoming neighbors, thus
∑k−1
j=1 IR(uj)

equals
∑k
j=1 IR(uj) plus 1. It implies that

∑k−1
j=1 IR(uj) = nS − (k − 1) after the loop i = k .

After the loop i = p + 1, we have
∑p
i=1 IR(ui) = nS − p. At each loop i = p down to

i = 1, the value of IR(ui) is increased by 1. Thus, when the algorithm stops we have:

∑
u∈S

IR(u) =

p∑
i=1

IR(ui) = nS − p + p = |Ad(G ,S)|

Theorem 4.5 implies that each vertex u ∈ S contributes IR(u) in propagating

the influence over the network G . Now, suppose that G is the coupled network of

multiple ones, we can sum up the influence relay of all seed vertices of a component

network to obtain the contribution of that network. Furthermore, the total influence relay

85

of overlapping vertices indicates the amount information propagated back and forth

between networks.

We can also adapt the influence relay metric to measure the support between

networks in propagating information. Let’s consider the case the information emerges

from the seed vertices of one network, propagates to another networks via overlapping

users, then comes back to the first network. With the support of other networks, the

information is propagated further in the first network. If we consider the diffusion process

in the coupled network and increase the influence relay by 1 only on activated vertices in

the first network, we can quantify the support from other networks by the total influence

relay which goes through other networks.

4.6 Experimental Evaluation

In this section, we show the experimental results for coupling schemes and use

the coupling schemes to analyze the influence diffusion in multiple networks. Firstly,

we compare lossless and lossy coupling schemes to measure the trade-off between

the running time and the quality of solutions. Since the massive influence problem is

NP-hard [17] in a single network, we use the greedy algorithm, which provides high

quality solution, to find the solution after coupling networks. We also investigate the

relationship between networks in the information diffusion to answer the following

questions: (1) What is the role of overlapping users in the diffusion of the information?

(2) How does a network get benefit from other networks to diffuse the information? (3)

Can the diffusion on one network provide a burst of information in other networks? (4)

What will we miss if we consider each network separately?

We ran all our experiments on Intel(R) Xeon(R) CPU W350 machine with a 12 GB

RAM and a 2.93 GHz Quad-core processor. In all experiments, by default, the number of

hops is d = 4 and the influence fraction β = 0.8.

86

Networks #Nodes #Edges Avg. Degree

Twitter 48277 16304712 289.7

FSQ 44992 1664402 35.99

CM 40420 175692 8.69

Het 8360 15751 1.88

NetS 1588 2742 1.73

Table 4-1. Foursquare-Twitter and co-author network data-sets

4.6.1 Datasets

Real networks. We do experiments on two systems of networks: Twitter and

Foursquare (FSQ) networks [49], and co-author networks in the area of Condensed

Matter(CM) [43], High-Energy Theory(Het) [43], and Network Science (NetS) [42]. The

statistics of networks are described in Table 4-1. While the overlapping users of the

first dataset is provided in [49], we match overlapping users of the second one based

on authors’ names. The numbers of overlapping nodes of network pairs FSQ-Twitter,

CM-Het, CM-NetS, and Het-NetS are 4100, 2860, 517, and 90, respectively. Moreover,

while co-author networks have edge weights, FSQ-Twitter dataset only contains the

network topologies. If the network does not have edge weights, we assign the weight

of each edge randomly from 0 to 1. We then normalize the edge weights such that the

total weight of in-coming edges is 1 for each node. This is suitable since the influence of

user u on user v tends to be small if v is under the influence many friends. Finally, the

threshold of each node is a random value from 0 to 1.

Synthesized networks. We also use synthesized networks generated by Erdos-Renyi

random network model [26] to test networks with controlled parameters. There are two

networks with 5000 nodes are formed by randomly connecting each pair of nodes with

probability p1 = 0.0008 and p2 = 0.006. The average degrees, 8 and 60, reflect the

diversity of network densities in the reality. Then, we select randomly f fraction of nodes

87

in the first network as overlapping nodes. The edge weights and node thresholds are

assigned as above.

4.6.2 Comparison of Coupling Schemes

We first evaluate the effect of the coupling schemes on the running time and

the quality of the found solutions when we use the greedy algorithm to solve MIP. As

illustrated in Fig. 4-6, the algorithm provides larger seed sets but runs faster in lossy

coupled networks than lossless coupled networks. In both Twitter-FSQ and co-author

datasets, the seed sizes are smallest when the lossless coupling scheme is used. It is

as expected since the lossless coupling scheme reserves all the influence information

which is exploited later to solve MIP. However, the seed sizes are only a bit larger using

the lossy coupling schemes. In the lossy coupling schemes, the information is only

lost at overlapping users which occupies a small fraction the total number of users

(roughly 5% in Twitter-FSQ and 7% in co-author networks). Thus, the effect of lossy

coupling schemes on the solution quality is small especially when the seed sets are big

to influence a large fraction of users. On the other hand, the algorithm runs much faster

in lossy coupled networks with the factor up to 2 times in Twitter-FSQ and 4 times in

co-author networks. The major disadvantages of the lossless coupling scheme is the

doubled number of hops, the number of extra nodes and edges. In co-author dataset,

the number of extra edges are relative high comparing to the total number of edges in

all networks, so the speeding up factor is higher in co-author networks. We therefore

can infer that the lossy coupling schemes work well on real datasets in which networks

are sparse and the number of overlapping users is small. Next, we examine the effect

of the number of overlapping users on the performance of the coupling schemes with

the synthesized datasets. Fig. 4-7 demonstrates the results on two networks of size

5000 and different fraction of overlapping users f . The overlapping fraction significantly

differentiate the coupling schemes in terms of both the solution quality and running

time. When f is small, the seed sizes are quite close with all coupling schemes. But

88

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Average
Easiness

Involvement
Lossless

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
u
n
n
i
n
g

T
i
m
e

i
n

s

Fraction Influenced

Average
Easiness

Involvement
Lossless

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Average
Easiness

Involvement
Lossless

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
u
n
n
i
n
g

T
i
m
e

i
n

s

Fraction Influenced

Average
Easiness

Involvement
Lossless

Figure 4-6. Comparing Coupling Schemes for Finding Minimum Seed Set on co-author
Networks (upper figures) and on FSQ and Twitter (lower figures)

when f increases, the gap between schemes is bigger and bigger. The variation of f

also reveals the effectiveness of the easiness lossy coupling scheme (the best) and

the disgrace of the trivial average scheme (the worst) among the lossy ones. It is more

interesting when we look at the running time. The running time in the lossless coupled

networks is initially higher than in the lossy coupled networks but it gradually catches up

and overtakes the later networks at f = 0.4. The key point is the size of the seed set.

The larger f is, the larger the ratio between the seed size in lossless and lossy coupled

networks is. As the running time depends on the seed size, the running time in the

lossless coupled network reduces faster. Thus, we recommend to use lossless scheme

when the overlapping fraction is large and the seed size is predicted to be small.

89

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1

T
o
t
a
l

S
e
e
d

S
i
z
e

Fraction of Overlap

Average
Easiness

Involvement
Lossless

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1

R
u
n
n
i
n
g

T
i
m
e

i
n

s

Fraction of Overlap

Average
Easiness

Involvement
Lossless

Figure 4-7. Comparing coupling schemes with different overlapping fraction f

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 2 3 4 5

S
e
e
d

S
i
z
e

No. of hops

Average
Easiness

Involvement
Lossless

A Co-author networks

 0

 1000

 2000

 3000

 4000

 5000

 2 3 4 5

S
e
e
d

S
i
z
e

No. of hops

Average
Easiness
Involment
Lossless

B FSQ and Twitter

Figure 4-8. Comparing coupling schemes with different number of propagation hops d

Since the seed size is sensitive to the number of hops [24], we would like to

evaluate coupling schemes with different propagation hops. Similar to single networks,

Fig. 4-8 shows that the seed size decreases when we have larger number of propagation

hops. However, the lossy coupling schemes deviate more and more from the lossless

one in terms of the relative seed size when the number of hops increases. Let’s consider

the ratio of the seed sizes between the best lossy coupling scheme (the easiness one)

and the lossless coupling scheme. It is 1.05 (1.1) and 1.5 (1.3) in co-author networks

(FSQ-Twitter) with d = 2 and d = 5. The reason is that the lossy coupling schemes

inherently bear the error which is accumulated and propagated after each hop.

90

4.6.3 Benefits of Coupled Network

Coupling schemes provide the mechanism to study multiple networks under a

consistent view which helps to answer different concerns about the influence diffusion.

For example, Fig. 4-6 shows a property that is similar to one in a single network: the

seed size increases super linearly regarding to the influence fraction. It means that the

gain per seed users is decreased when the circle of influence is broadened. Moreover,

without the coupled network, we may need to find the seed set on each network to

influence β fraction of all users and union them to obtain the seed set for the whole

system. Fig. 4-9 clearly demonstrates that if we influence each network separately

we would need a much larger seed set compared to what we need in the coupled

network, no matter which type of coupling we use. The seed set found on the lossless

coupled network almost has the same size with the largest seed set found in component

networks in co-author dataset and even smaller in Twitter-FSQ. In co-author datasets,

the size of the union set to influence 0.8 fraction of users is 24% and 30% larger the

size of the seed sets found in lossless and lossy networks. These numbers are 23% and

47% in Twitter-FSQ. The reason is that the lossless (lossy) coupled network can capture

(partially capture) the collaboration of networks to propagate the information and exploit

it to reduce the seed size. When we find the seed set in each network separately, we

ignore this property. As a consequence, we endure a penalty on the size of the union

set which is high if networks can propagate the information well like Twitter and FSQ.

Although we can use other methods to solve MIP without using coupling schemes, they

may be more complicated and cause the seed size increase.

The coupling schemes not only help to solve MIP, it is also help to investigate

other aspects of the influence diffusion in the system of networks. origin Due to

the overlapping with other networks, we may underestimate the ability to diffuse the

information of a specific network. It motivates us gauge the viral marketing potential of

a network allowing the information to be propagate to back and forth to other networks.

91

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Only CM
Only Het
Only NetS
Easiness
Lossless

Seed Union

A Co-author networks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Only FSQ
Only Twitter

Easiness
Lossless

Seed Union

B FSQ and Twitter

Figure 4-9. The quality of seed sets with and without using the coupled network

Specifically, we use the greedy algorithm to find the smallest seed set to influence β

fraction of the studied network’ users in the lossless coupled network. Then we compare

it to the seed set found in the traditional perspective – considering this network as a

standalone one. As shown in Fig. 4-10, the seed size decreases up to 9%, 25%, 17%,

and 26% in CM, Het, FSQ, and Twitter, respectively, when we consider these networks

in the connection with other networks. The improvement in NetS is small due to the

small number of overlapping users with other networks. It is also observed that the

improvement ratio is higher for network with low conductance of influence in the case of

FSQ and Twitter, two networks with the same number of users. When the network sizes

are unbalanced, Het – the network with the smaller number of users seems to get better

improvement ratio than the bigger network CM. The back and forth propagation of the

information between networks is the base for the outside support of the target network.

When the information is propagated from seed nodes in the target network, some nodes

are activated in other networks due to the overlapping nodes. The information then

is propagated further and even comes back to the target network, hence the number

of influenced node in the target network is increased. Fig. 4-11 shows the amount of

influence relay that other networks support the target network with d = 4 and d = 8

hops. The support is considerable and higher with the larger number of hops. When

92

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Separate CM
CM in Lossless

Separate Het
Het in Lossless

Separate NetS
NetS in Lossless

A Co-author networks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
e
e
d

S
i
z
e

Fraction Influenced

Separate FSQ
FSQ in Lossless

Separate Twitter
Twitter in Lossless

B FSQ and Twitter

Figure 4-10. The quality of seed sets with and without using the coupled network

d = 8, the information has more chance to come back to the target network; the support

is up to 2.2%, 5%, 8.3%, and 7.3% on the network CM, Het, Twitter, and FSQ. The

support is higher if the information is easier to be propagated in component networks.

4.6.4 Bias in Selecting Seed Nodes

Here, we analyze the the seed set on the lossless coupled network to observe how

much each network contributes towards the composition of the seed set and the set

of influenced nodes. We mainly address two questions: (1) which network supports

the propagation better and (2) whether there is a bias toward a network selecting seed

nodes. Fig. 4-12 shows the fraction of selected nodes as well as influenced nodes

in each network and the overlapping part. We can observe that overlapping nodes

tend to be selected in both datasets. When the influenced fraction is 0.4, the fraction

of overlapping seed nodes is around 24.9% and 25% on co-author and FSQ-Twitter

networks, respectively. Note that only 5% (7%) total users of FSQ-Twitter (co-author

networks) are overlapping users. This shows that overlapping users not only play

the role as bridges for information to propagate between networks but also have

high influence. As illustrated in Fig. 4-13, the contribution of the overlapping nodes

in influencing other nodes is high, especially when β is small. Additionally, there is

an unbalance between the number of selected seeds and influenced nodes in each

93

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

C H N C H N C H N C H N

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Intra Influence
Supporting Influence

0.80.60.40.2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

F T F T F T F T

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Intra Influence
Supporting Influence

0.80.60.40.2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

C H N C H N C H N C H N

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Intra Influence
Supporting Influence

0.80.60.40.2

A Co-author networks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

F T F T F T F T

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Intra Influence
Supporting Influence

0.80.60.40.2

B FSQ and Twitter

Figure 4-11. The support between networks on the influence propagation of a network
with d = 4 (upper figures) and d = 8 (lower figures) hops. C, H, N, F, and T
are the abbreviations of CM, Het, NetS, FSQ, and Twitter.

networks. In co-author dataset, the biggest network, CM, contributes a large number of

seed nodes and influenced nodes. When β = 0.8, 76.7% of seed nodes and 80.5% of

influenced nodes are from CM. In contrast, the number of seed nodes from FSQ is small

but the number of influenced nodes in FSQ much higher than Twitter. Let consider the

influence fraction of 0.4, 27% (without overlapping nodes) of seed nodes belong to FSQ

while 70% of influenced nodes are in FSQ. After nodes in FSQ are almost influenced,

the algorithm starts to select more nodes in Twitter to increase the influence fraction. It

implies an important characteristic of multiple networks. If the information is easier to

flow in one network, that network will attract and propagate more information inside. In

94

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0
.
0
0
4

0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8

S
e
e
d

S
i
z
e

Fraction Influenced

Overlap
Only CM
Only Het

Only NetS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0
.
0
0
4

0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8N

o
.

o
f

I
n
f
l
u
e
n
c
e
d

N
o
d
e
s

Fraction Influenced

Overlap
Only CM

Only Het
Only NetS

 0

 200

 400

 600

 800

 1000

 1200

 1400

0
.
0
1

0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8

S
e
e
d

S
i
z
e

Fraction Influenced

Overlap
Only FSQ

Only Twitter

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

0
.
0
1

0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8N

o
.

o
f

I
n
f
l
u
e
n
c
e
d

N
o
d
e
s

Fraction Influenced

Overlap
Only FSQ

Only Twitter

Figure 4-12. The bias in selecting seed nodes on synthesized networks (upper figures)
and on FSQ and Twitter (lower figures)

the big picture, it provides hints for viral marking: overlapping nodes have high potential

to target and some networks are more efficient to advertise than others.

4.7 Extensions to Other Cascading Models

In this section, we show that we can design lossless coupling schemes for some

other well-known cascading models in each component network. As a consequence,

top influential nodes can be identify under these models. In particular, we investigate

two most popular stochastic diffusion models which are Stochastic Threshold model and

Independent Cascading model [34].

• Stochastic Threshold model. This model is similar to the Linear Threshold model
but the threshold θi(u i) of each node u i of G i is a random value in the range
[0,Θi(u i)]. Node u i will be influenced when

∑
v i∈N−

ui
,v∈A w

i(v i , u i) ≥ θi(u i)

95

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.2 0.4 0.6 0.8

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Overlap
Only CM

Only Het
Only NetS

A Co-author networks

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

0.2 0.4 0.6 0.8

T
o
t
a
l

R
e
l
a
y

Influenced Fraction

Overlap
Only FSQ

Only Twitter

B FSQ and Twitter

Figure 4-13. The influence contribution of seed nodes from component networks

• Independent Cascading model. In this model, there are only edge weights
representing the influence between users. Once node u i of G i is influenced, it
has a single chance to influence its neighbor v i ∈ N+(u i) with probability w i(u i , v i).

For both models, we use the same approach of using user vertices, account

vertices and the synchronization between user vertices and their account vertices.

Specifically, the weight of edge (u i , uj), 0 ≤ i ̸= j ≤ k will be Θ(uj) for Stochastic

Threshold model and 1 for Independent Cascading model. With this assignment, if u i is

influenced, uj will be influenced with probability 1 in the next time step. The proof for the

equivalence of the coupling scheme is similar to ones for Section 4.3.

4.8 Summary

In this chapter, we study the massive influence problem in multiple networks. To

tackle the problem, we introduced novel coupling schemes to reduce the problem to

a version on a single network. Then we design a new metric to quantify the flow of

influence inside and between networks based on the coupled network. Exhaustive

experiments provide new insights to the information diffusion in multiple networks.

In the future, we plan to investigate the problem on multiple networks with

heterogeneous diffusion models. In particular, each network may have its own diffusion

model, the question is how to represent them efficiently. Does there exist a method to

couple them into one network?

96

CHAPTER 5
CONCLUSIONS

In this thesis, we study the problem of identifying granular nodes of the cascading

propagation in networks. Under the cascading effect, these nodes have a strong impact

over the network. It is crucial to detect such nodes to serve various purposes e.g. the

economical gain. When the studied networks are social networks, we can use nodes

as the target for advertising. On the other hand, if networks are infrastructure on like

power network, communication networks, etc., we can protect these nodes from being

attacked. For each kind of networks, we propose efficient strategies to find such group of

nodes.

In interdependent infrastructure network, we introduce a new centrality for coupled

networks and utilize it to detect most vulnerable nodes. In addition, a efficient greedy

framework is proposed where the pure greedy and centrality measure are combined to

provide a better solution in shorter time. In multiple online social networks, we design

a novel framework to find top influential users. In particular, novel coupling schemes

are designed to reduce the problem on multiple networks to one on a network. As a

consequence, we can apply existing solutions for a network to find most influential

nodes in multiple networks. It is a crucial connection which shows that solving the

problem on coupled networks is as easy as on the single network. We believe that

the coupling schemes can be extended to other models. Finally, we investigate the

cascading failure under load redistribution model in power networks. A new cascading

centrality is designed specifically load redistribution model and can be used to detect

most critical nodes efficiently. Moreover, we propose the cooperating attack strategy to

evaluate the weakness of networks even when it is designed to tolerate node failures.

97

REFERENCES

[1] “Michael jackson on tmz, iran on twitter.” http://www.blogher.com/

spreading-news, 2009.

[2] “Overlap Among Major Social Network Services.” http://www.tomhcanderson.com/

2009/07/09/overlap-among-major-social-network-services/, 2009.

[3] “216 Social Media and Internet Statistics.” http://thesocialskinny.com/

216-social-media-and-internet-statistics-september-2012/, 2012.

[4] “99 New Social Media Stats for 2012.” http://thesocialskinny.com/

99-new-social-media-stats-for-2012/, 2012.

[5] Albert, R., Albert, I., and Nakarado, G. L. “Structural vulnerability of the North
American power grid.” Phys. Rev. E 69 (2004).2.

[6] Albert, R., Jeong, H., and Barabasi, A.L. “Error and attack tolerance of complex
networks.” Nature 406 (2000).6794: 378–382.

[7] Albert, Réka, Albert, István, and Nakarado, Gary L. “Structural vulnerability of the
North American power grid.” Physical Review E 69 (2004).2: 025103.

[8] Arulselvan, Ashwin, Commander, Clayton W., Elefteriadou, Lily, and Pardalos,
Panos M. “Detecting critical nodes in sparse graphs.” Comput. Oper. Res. 36
(2009): 2193–2200.

[9] Barabasi, Albert-Laszlo and Albert, Reka. “Emergence of Scaling in Random
Networks.” Science 286 (1999).5439: 509–512.

[10] Borgatti, Stephen P. “Identifying sets of key players in a social network.” Comput.
Math. Organ. Theory 12 (2006).1: 21–34.

[11] Borgatti, Stephen P. and Everett, Martin G. “A Graph-theoretic perspective on
centrality.” Social Networks 28 (2006).4: 466 – 484.

[12] Bornholdt, Stefan and Schuster, Heinz Georg, eds. Handbook of Graphs and
Networks: From the Genome to the Internet. New York, NY, USA: John Wiley &
Sons, Inc., 2003.

[13] Brandes, Ulrik and Erlebach, Thomas. Network Analysis: Methodological Founda-
tions. Springer, 2005.

[14] Brown, Jacqueline Johnson and Reingen, Peter H. “Social Ties and Word-of-Mouth
Referral Behavior.” Journal of Consumer Research 14 (1987).3: pp. 350–362.

[15] Buldyrev, Sergey V, Parshani, Roni, Paul, Gerald, Stanley, H Eugene, and Havlin,
Shlomo. “Catastrophic cascade of failures in interdependent networks.” Nature 464
(2010).7291: 1025–1028.

98

http://www.blogher.com/spreading-news
http://www.blogher.com/spreading-news
http://www.tomhcanderson.com/2009/07/09/overlap-among-major-social-network-services/
http://www.tomhcanderson.com/2009/07/09/overlap-among-major-social-network-services/
http://thesocialskinny.com/216-social-media-and-internet-statistics-september-2012/
http://thesocialskinny.com/216-social-media-and-internet-statistics-september-2012/
http://thesocialskinny.com/99-new-social-media-stats-for-2012/
http://thesocialskinny.com/99-new-social-media-stats-for-2012/

[16] Buldyrev, Sergey V., Shere, Nathaniel W., and Cwilich, Gabriel A. “Interdependent
networks with identical degrees of mutually dependent nodes.” Phys. Rev. E 83
(2011): 016112.

[17] Chen, Ning. “On the approximability of influence in social networks.” Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms. SODA
’08. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008,
1029–1037.

[18] Chen, Wei, Wang, Chi, and Wang, Yajun. “Scalable influence maximization for
prevalent viral marketing in large-scale social networks.” Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’10. New York, NY, USA: ACM, 2010, 1029–1038.

[19] Chen, Wei, Yuan, Yifei, and Zhang, Li. “Scalable Influence Maximization in Social
Networks under the Linear Threshold Model.” Proceedings of the 2010 IEEE
International Conference on Data Mining. ICDM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, 88–97.

[20] Chlebk, Miroslav and Chlebkov, Janka. “Complexity of approximating bounded
variants of optimization problems.” Theoretical Computer Science 354 (2006).3:
320 – 338.

[21] Church, Richard L., Scaparra, Maria P., and Middleton, Richard S. “Identifying
Critical Infrastructure: The Median and Covering Facility Interdiction Problems.”
Annals of the Association of American Geographers 94 (2004).3: pp. 491–502.

[22] Crucitti, Paolo, Latora, Vito, Marchiori, Massimo, and Rapisarda, Andrea. “Error
and attack tolerance of complex networks.” Physica A: Statistical Mechanics and its
Applications 340 (2004).1: 388–394.

[23] Csardi, Gabor and Nepusz, Tamas. “The igraph software package for complex
network research.” InterJournal Complex Systems (2006): 1695.

[24] Dinh, Thang N., Nguyen, Dung T., and Thai, My T. “Cheap, easy, and massively
effective viral marketing in social networks: truth or fiction?” Proceedings of the
23rd ACM conference on Hypertext and social media. HT ’12. New York, NY, USA:
ACM, 2012, 165–174.

[25] Dinh, Thang N., Xuan, Ying, Thai, My T., Park, E. K., and Znati, Taieb. “On
Approximation of New Optimization Methods for Assessing Network Vulnerability.”
INFOCOM. IEEE, 2010, 2678–2686.

[26] Erdos, Paul and Rényi, Alfréd. “On the evolution of random graphs.” Bull. Inst.
Internat. Statist 38 (1961).4: 343–347.

[27] Gao, Jianxi, Buldyrev, Sergey V, Stanley, H Eugene, and Havlin, Shlomo. “Networks
formed from interdependent networks.” Nature Physics 8 (2011).1: 40–48.

99

[28] Goldenberg, J., Libai, B., and Muller, E. “Talk of the network: A complex systems
look at the underlying process of word-of-mouth.” Marketing letters 12 (2001).3:
211–223.

[29] Grubesic, Tony H., Matisziw, Timothy C., Murray, Alan T., and Snediker, Diane.
“Comparative Approaches for Assessing Network Vulnerability.” International
Regional Science Review 31 (2008).1: 88–112.

[30] Hines, Paul, Blumsack, Seth, Cotilla Sanchez, E, and Barrows, Clayton. “The
topological and electrical structure of power grids.” System Sciences (HICSS), 2010
43rd Hawaii International Conference on. IEEE, 2010, 1–10.

[31] Hopcroft, John and Tarjan, Robert. “Algorithm 447: efficient algorithms for graph
manipulation.” Commun. ACM 16 (1973).6: 372–378.

[32] Huang, Xuqing, Gao, Jianxi, Buldyrev, Sergey V., Havlin, Shlomo, and Stanley,
H. Eugene. “Robustness of interdependent networks under targeted attack.” Phys.
Rev. E 83 (2011): 065101.

[33] Hwang, W., Cho, and Ramanathan, M. “Bridging Centrality: Identifying Bridging
Nodes in Scale-free Networks.” Technical Report, Department of CSE, University at
Buffalo. 2006.

[34] Kempe, David, Kleinberg, Jon, and Tardos, Éva. “Maximizing the spread of
influence through a social network.” Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. KDD ’03. New
York, NY, USA: ACM, 2003, 137–146.

[35] ———. “Influential nodes in a diffusion model for social networks.” Proceedings
of the 32nd international conference on Automata, Languages and Programming.
ICALP’05. Berlin, Heidelberg: Springer-Verlag, 2005, 1127–1138.

[36] Kinney, Reka, Crucitti, Paolo, Albert, Reka, and Latora, Vito. “Modeling cascading
failures in the North American power grid.” The European Physical Journal B-
Condensed Matter and Complex Systems 46 (2005).1: 101–107.

[37] Leskovec, Jure, Krause, Andreas, Guestrin, Carlos, Faloutsos, Christos,
VanBriesen, Jeanne, and Glance, Natalie. “Cost-effective outbreak detection
in networks.” Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. KDD ’07. New York, NY, USA: ACM, 2007,
420–429.

[38] Liu, Xingjie, He, Qi, Tian, Yuanyuan, Lee, Wang-Chien, McPherson, John, and Han,
Jiawei. “Event-based social networks: linking the online and offline social worlds.”
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’12. New York, NY, USA: ACM, 2012, 1032–1040.

100

[39] Luciano, Rodrigues, F.A., Travieso, G., and Boas, V. P. R. “Characterization of
complex networks: A survey of measurements.” Advances in Physics 56 (2007).1:
167–242.

[40] Motter, Adilson E and Lai, Ying-Cheng. “Cascade-based attacks on complex
networks.” Physical Review E 66 (2002).6: 065102.

[41] Murray, Alan T., Matisziw, Timothy C., and Grubesic, Tony H. “A Methodological
Overview of Network Vulnerability Analysis.” Growth and Change 39 (2008).4:
573–592.

[42] Newman, M. E. J. “Finding community structure in networks using the eigenvectors
of matrices.” Phys. Rev. E 74 (2006): 036104.

[43] Newman, Mark EJ. “The structure of scientific collaboration networks.” PNAS 98
(2001).2: 404–409.

[44] Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., and Havlin, S. “Inter-similarity
between coupled networks.” EPL (Europhysics Letters) 92 (2010).6: 68002.

[45] Parshani, Roni, Buldyrev, Sergey V, and Havlin, Shlomo. “Interdependent networks:
reducing the coupling strength leads to a change from a first to second order
percolation transition.” Physical Review Letters 105 (2010).4: 048701.

[46] Rosas-Casals, Marti, Valverde, Sergi, and Solé, Ricard V. “Topological vulnerability
of the European power grid under errors and attacks.” International Journal of
Bifurcation and Chaos 17 (2007).07: 2465–2475.

[47] Rosato, V, Issacharoff, L, Tiriticco, F, Meloni, S, Porcellinis, S De, and Setola, R.
“Modelling interdependent infrastructures using interacting dynamical models.”
International Journal of Critical Infrastructures 4 (2008).1/2: 63.

[48] Schneider, Christian M, Araujo, Nuno A M, Havlin, Shlomo, and Herrmann, Hans J.
“Towards designing robust coupled networks.” Minerva (2011): 1–7.

[49] Shen, Yilin, Dinh, Thang N., Zhang, Huiyuan, and Thai, My T. “Interest-matching
information propagation in multiple online social networks.” Proceedings of the 21st
ACM international conference on Information and knowledge management. CIKM
’12. New York, NY, USA: ACM, 2012, 1824–1828.

[50] Strang, Gilbert. Linear Algebra and Its Applications. Brooks Cole, 1988, 3 ed.

[51] Vazirani, Vijay V. Approximation algorithms. New York, NY, USA: Springer-Verlag
New York, Inc., 2001.

[52] Wang, Feng, Camacho, Erika, and Xu, Kuai. “Positive influence dominating set in
online social networks.” Combinatorial Optimization and Applications. Springer,
2009. 313–321.

101

[53] Wang, Jian-Wei and Rong, Li-Li. “Cascade-based attack vulnerability on the US
power grid.” Safety Science 47 (2009).10: 1332 – 1336.

[54] Wang, Wenkai, Cai, Qiao, Sun, Yan, and He, Haibo. “Risk-aware attacks and
catastrophic cascading failures in us power grid.” Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011, 1–6.

[55] Watts, Duncan J and Strogatz, Steven H. “Collective dynamics of
small-worldnetworks.” nature 393 (1998).6684: 440–442.

[56] Wu, Zhi-Xi, Peng, Gang, Wang, Wen-Xu, Chan, Sammy, and Wong, Eric
Wing-Ming. “Cascading failure spreading on weighted heterogeneous networks.”
Journal of Statistical Mechanics: Theory and Experiment 2008 (2008).05: P05013.

[57] Xia, Yongxiang, Tse, Chi K., Tam, Wai M., Lau, Francis C. M., and Small, Michael.
“Scale-free user-network approach to telephone network traffic analysis.” Phys.
Rev. E 72 (2005): 026116.

[58] Yagan, Osman, Qian, Dajun, Zhang, Junshan, and Cochran, Douglas. “Information
diffusion in overlaying social-physical networks.” Information Sciences and Systems
(CISS), 2012 46th Annual Conference on. 2012, 1 –6.

[59] Zhao, Liang, Park, Kwangho, and Lai, Ying-Cheng. “Attack vulnerability of
scale-free networks due to cascading breakdown.” Physical review E 70 (2004).3:
035101.

[60] Zhao, Liang, Park, Kwangho, Lai, Ying-Cheng, and Ye, Nong. “Tolerance of
scale-free networks against attack-induced cascades.” Physical Review E 72
(2005).2: 025104.

[61] Zhu, Xu, Yu, Jieun, Lee, Wonjun, Kim, Donghyun, Shan, Shan, and Du, Ding-Zhu.
“New dominating sets in social networks.” Journal of Global Optimization 48
(2010).4: 633–642.

[62] Zou, Feng, Zhang, Zhao, and Wu, Weili. “Latency-Bounded Minimum Influential
Node Selection in Social Networks.” WASA. 2009, 519–526.

102

BIOGRAPHICAL SKETCH

Dung T. Nguyen received the BS degree in Information Technology from Hanoi

University of Science and Technology, Hanoi, Vietnam in 2008. He is currently a PhD

student at the Department of Computer and Information Science and Engineering,

University of Florida, under the supervision of Dr. My T. Thai. His areas of interest are

viral marketing on online social networks, vulnerability and cascading failures on coupled

networks, and approximation algorithms for network optimization problems.

103

DISTRIBUTION LIST
DTRA-TR-15-28

 DL-1

DEPARTMENT OF DEFENSE

DEFENSE THREAT REDUCTION

AGENCY

8725 JOHN J. KINGMAN ROAD

STOP 6201

FORT BELVOIR, VA 22060

 ATTN: A. LYALIKOV

DEFENSE TECHNICAL

INFORMATION CENTER

8725 JOHN J. KINGMAN ROAD,

SUITE 0944

FT. BELVOIR, VA 22060-6201

 ATTN: DTIC/OCA

DEPARTMENT OF DEFENSE

CONTRACTORS

QUANTERION SOLUTIONS, INC.

1680 TEXAS STREET, SE

KIRTLAND AFB, NM 87117-5669

 ATTN: DTRIAC

	HDTRA10910061_Final Report_Sent to DTIC.pdf
	HDTRA1-09-1-0061_FINAL REPORT_CORRECTED.pdf
	Final_Report HDTRA1-09-1-0061
	NGUYEN_NAM_THESIS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Community Detection in Dynamic Complex Networks
	1.2 Nonnegative Matrix Factorization for Community Detection
	1.3 Applications of The Network Community Structure
	1.4 The Identification of Stable Communities
	1.5 The Assessment of Network Community Structure Vulnerability
	1.6 Literature Review
	1.7 Dissertation outline

	2 NONOVERLAPPING COMMUNITY STRUCTURE DETECTION
	2.1 Problem Definition
	2.2 Algorithm Description
	2.2.1 New node
	2.2.2 New edge
	2.2.3 Node removal
	2.2.4 Edge removal

	2.3 Experimental Results
	2.3.1 Results on synthesized networks
	2.3.2 Results on real-world traces

	3 OVERLAPPING COMMUNITY STRUCTURE DETECTION
	3.1 Problem Formulation
	3.1.1 Basic notations
	3.1.2 Dynamic network model
	3.1.3 Density function
	3.1.4 Objective function
	3.1.5 Problem definition

	3.2 Basic Community Structure Detection
	3.2.1 Locating local communities
	3.2.2 Combining overlapping communities
	3.2.3 Revisiting unassigned nodes

	3.3 Detecting Evolving Network Communities
	3.3.1 Handling a new node
	3.3.2 Handling a new edge
	3.3.3 Removing an existing node
	3.3.4 Removing an edge
	3.3.5 Remarks
	3.3.6 Complexity

	3.4 Experimental Results
	3.4.1 Choosing the overlapping threshold
	3.4.2 Reference to static methods
	3.4.3 Reference to other dynamic methods

	4 COMMUNITY STRUCTURE DETECTION USING NONNEGATIVE MATRIX FACTORIZATION
	4.1 Problem Definition and Properties
	4.1.1 Motivation for NMF in community detection
	4.1.2 Problem definitions
	4.1.3 Properties of iSNMF and iANMF factorizations

	4.2 The Update Rule for iSNMF
	4.2.1 Multiplicative update rule
	4.2.2 Quasi-Newton method for iSNMF

	4.3 Update Rules for iANMF
	4.3.1 Multiplicative update rules

	4.4 Experimental Results
	4.4.1 Empirical results on synthesized networks
	4.4.2 Results on real networks

	5 SOCIAL-AWARE ROUTING STRATEGIES IN MOBILE AD-HOC NETWORKS
	5.1 A Message Forwarding and Routing Strategy Employing QCA
	5.1.1 Setup
	5.1.2 Results

	5.2 A Message Forwarding and Routing Strategy Employing AFOCS
	5.2.1 Message forwarding strategy
	5.2.2 Setup
	5.2.3 Results

	6 SOLUTIONS FOR WORM CONTAINMENT IN ONLINE SOCIAL NETWORKS
	6.1 An Application of QCA in Containing Worms in OSNs
	6.1.1 Setup
	6.1.2 Results

	6.2 Containing Worms with Overlapping Communities Detected by AFOCS
	6.2.1 Setup
	6.2.2 Results

	7 STABLE COMMUNITY DETECTION IN ONLINE SOCIAL NETWORKS
	7.1 Basic Notations
	7.2 Link Stability Estimation
	7.2.1 Link reciprocity prediction
	7.2.2 Link stability estimation

	7.3 Stable Community Detection
	7.3.1 Lumped Markov chain
	7.3.2 Connection to the network topology
	7.3.3 Detecting communities
	7.3.3.1 Formulation
	7.3.3.2 Resolution limit analysis
	7.3.3.3 Connection to stability estimation
	7.3.3.4 A greedy algorithm for SCD problem

	7.4 Experimental Results
	7.4.1 Datasets
	7.4.2 Metric
	7.4.3 Effect of link stability estimation
	7.4.4 General community structure detection
	7.4.5 Results on stable community detection

	7.5 Conclusion

	8 ASSESSING NETWORK COMMUNITY STRUCTURE VULNERABILITY
	8.1 Introduction
	8.2 Problem Definition
	8.3 Analysis of NMI Measure
	8.3.1 NMI formulation
	8.3.2 Minimizing NMI in a disjoint community structure
	8.3.2.1 Minimizing NMI within a community
	8.3.2.2 Minimizing NMI in a general disjoint community structure

	8.3.3 Minimizing NMI in an overlapped community structure

	8.4 A Solution to CSV Problem
	8.5 Experimental Results
	8.5.1 Results on synthesized networks
	8.5.1.1 Solution quality
	8.5.1.2 The number of communities and their sizes

	8.5.2 Results on real-world traces

	8.6 An Application in DTNs

	9 CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

	dissertation_Dinh
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Connectivity-based Vulnerability Assessment
	1.1.1 Motivation
	1.1.2 -disruptor Problems
	1.1.3 Related Work
	1.1.4 Contributions

	1.2 Cascading Failures in Critical Infrastructures
	1.2.1 Problem Definitions
	1.2.2 Related Work.
	1.2.3 Contributions

	2 MULTIPLE LINK ATTACKS
	2.1 Complexity of Finding Disruptor
	2.1.1 NP-completeness of Edge Disruptor
	2.1.2 Hardness of Approximation: Vertex Disruptor

	2.2 Bicriteria Approximation Algorithm for -edge Disruptor
	2.2.1 Balanced Tree-Decomposition
	2.2.2 Dynamic Programming Algorithm on the Decomposition Tree

	2.3 Bounds on the Size of Edge Disruptor
	2.3.1 Laplacian Matrix and and Its Eigenvalues
	2.3.2 Spectral Lower-bound for Link Assessment
	2.3.2.1 Dynamic Programming Method
	2.3.2.2 Lagrange Multipliers Method
	2.3.2.3 Time and quality trade-off

	2.3.3 Experimental Results
	2.3.3.1 Synthetic Networks
	2.3.3.2 Real-world Datasets

	3 MULTIPLE NODE ATTACKS
	3.1 Bicriteria Approximation Algorithm for -vertex Disruptor
	3.2 Connection between Edge Disruptor and Vertex Disruptor
	3.3 Branch-and-cut Algorithm
	3.3.1 Mixed Integer Programming Formulation
	3.3.2 Sparse Metric Technique
	3.3.3 Cutting Planes
	3.3.3.1 Vertex-Connectivity and Invalid Inequalities
	3.3.3.2 Separation Procedure for VC Inequalities

	3.3.4 Primal Heuristic

	3.4 Experimental study
	3.4.1 Performance of the Branch-and-cut Algorithm
	3.4.2 Case study: Western States Power Grid

	4 JOINT LINK AND NODE ATTACKS
	4.1 Mixed Removal of Nodes and Links
	4.1.1 Mixed Integer Linear Programming
	4.1.2 Relation between edge costs and vertex costs

	4.2 Bicriteria Approximation Algorithm for Joint Link and Node Attacks
	4.2.1 Algorithm Description
	4.2.2 Analysis of Approximation Ratio

	4.3 Hybrid Meta-heuristic
	4.3.1 Spectral Bisection
	4.3.2 Hybrid Meta-heuristic

	4.4 Experimental Studies
	4.4.1 Experiment Setups
	4.4.1.1 Datasets
	4.4.1.2 Removal costs schemes
	4.4.1.3 Finding the optimal disruptor
	4.4.1.4 Solving for the second eigenvector
	4.4.1.5 Implementation details

	4.4.2 Comparison of the three disruptor types
	4.4.3 Synthesis Networks of Different Topologies
	4.4.4 AS Relationships Networks

	5 VULNERABILITY ASSESSMENT IN PROBABILISTIC NETWORKS
	5.1 Probablilistic Networks
	5.1.1 Probabilistic Network Model
	5.1.2 Expected Pairwise Connectivity
	5.1.3 Vulnerability Assessment

	5.2 Estimation of Connectivity in Probabilistic Networks
	5.2.1 #P-Completeness
	5.2.2 Monte-Carlo Methods to Approximate EPC
	5.2.3 Fully Polynomial Time Approximation Scheme
	5.2.3.1 Component Sampling Algorithm

	5.3 Vulnerability Assessment using EPC
	5.3.1 Approximating via the Expectation Graph
	5.3.2 Sample Average Approximation (SAA) Method
	5.3.3 Local Search Heuristic

	6 CASCADING-FAILURES IN NETWOKRS
	6.1 Seeding Cost of Massive Outbreak
	6.1.1 Power-law Network Model.
	6.1.2 Prohibitive Seeding Costs

	6.2 Algorithm to Identify the Minimum Outbreak Seeding
	6.3 Hardness of the CFM Problem
	6.3.1 Feige's Reduction for Set Cover
	6.3.2 One-hop CFM
	6.3.3 Multiple-hop CFM

	6.4 Empirical Study
	6.4.1 Comparing to Optimal Seeding
	6.4.2 Large Social Networks
	6.4.3 Solution Quality in Large Social Networks
	6.4.4 Scalability
	6.4.5 Influence factor

	7 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

	Yilin-dissertation
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Power-Law Graphs
	1.1.1 Formal Definition
	1.1.2 Random Power-Law Graph Model

	1.2 Optimization Problems in Power-Law Graphs
	1.3 Vulnerability Assessment of Power-Law Networks
	1.4 Optimization of Power-Law Networks
	1.5 Outline of Dissertation

	2 HARDNESS AND APPROXIMATION ALGORITHMS
	2.1 Preliminaries
	2.1.1 Problem Definitions
	2.1.2 Some Notations
	2.1.3 Special Graphs
	2.1.4 Existing Inapproximability Results

	2.2 Inapproximability Optimal Substructure Framework in Power-Law Graphs
	2.3 Hardness and Inapproximability of Optimal Substructure Problems
	2.3.1 General Cycle-Based Embedding Technique
	2.3.2 APX-Hardness
	2.3.3 Inapproximability Factors

	2.4 More Inapproximability Results on Simple Power-Law Graphs
	2.4.1 General Graphic Embedding Technique
	2.4.2 Inapproximability of MIS, MVC and MDS
	2.4.3 Maximum Clique, Minimum Coloring

	2.5 Relationship between and Approximation Hardness
	2.6 Minor NP-Hardness on Simple Power-Law Graphs for <1
	2.7 Approximation Algorithms
	2.7.1 Low-Degree Percolation (LDP) Algorithm Framework
	2.7.2 Approximation Ratio Analysis
	2.7.2.1 Theoretical framework
	2.7.2.2 Power-law random graph

	2.8 Related Works

	3 VULNERABILITY ASSESSMENT
	3.1 Metric
	3.2 Threat Taxonomy and Notations
	3.2.1 Threat Taxonomy
	3.2.2 Notation Explanation

	3.3 Preliminaries
	3.3.1 Previous Works
	3.3.2 Robustness of Intact Power-law Networks

	3.4 Random Failures
	3.4.1 Robustness under Random Failures
	3.4.2 Good Range of under Random Failures

	3.5 Preferential Attacks
	3.5.1 Interactive Preferential Attacks (pi = 1- 1i)
	3.5.2 Expected Preferential Attacks (pi = c ie(-1))
	3.5.3 Relations between and Expected Attacked Nodes

	3.6 Degree-Centrality Attacks
	3.6.1 Robustness under Degree-Centrality Attacks
	3.6.2 Relations between and Attacked Nodes

	3.7 Random Cascading Failures
	3.7.1 Cascading Failure Model
	3.7.2 Cascading Random Failures
	3.7.3 Numerical Analysis

	3.8 Related Works

	4 OPTIMIZATION OF POWER-LAW NETWORKS
	4.1 Design Optimization of Power-law Networks
	4.1.1 Communication Networks
	4.1.2 Social Networks
	4.1.3 Optimal Range of Exponential Factor

	4.2 Critical Elements Detection in Power-law Networks
	4.2.1 Hardness of Detecting Critical Links and Nodes
	4.2.2 HILPR Approach
	4.2.2.1 Integer linear programming formulation
	4.2.2.2 Hybrid iterative lp rounding algorithm
	4.2.2.3 Performance evaluation

	4.2.3 TRGA Approach under Cascading Failures
	4.2.3.1 TRGA: an iterative 2-phase algorithm
	4.2.3.2 Optimality of CCND problem
	4.2.3.3 Experimental evaluation

	4.3 Related Works

	5 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

	Dung_Dissertation
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Cascading Failure in a Network
	1.2 Cascading Failure in Interdependent Networks
	1.3 Influence Diffusion in Multiple Online Social Networks
	1.4 Organization

	2 CASCADING FAILURE UNDER LOAD REDISTRIBUTION IN NETWORKS
	2.1 Network Model and Problem Formulation
	2.1.1 Graph Notations
	2.1.2 Cascading Failure Model
	2.1.3 Problem Definition

	2.2 Inapproximability Result
	2.3 Cascading Potential and Derived Algorithms
	2.3.1 Cascading Potential
	2.3.2 Cascading Potential Algorithm
	2.3.3 Adaptive Cascading Potential Algorithm
	2.3.4 Fully Adaptive Cascading Potential Algorithm

	2.4 Cooperating Attack Algorithm
	2.5 Experimental Evaluation
	2.5.1 Datasets
	2.5.2 The performance of Different Algorithms
	2.5.3 Network Robustness Under Different Settings
	2.5.4 Vertex Load and Network Robustness
	2.5.5 Network Topology and Network Robustness

	2.6 Related Works
	2.7 Summary

	3 CASCADING FAILURE OF NODES IN INTERDEPENDENT NETWORKS
	3.1 Network Model and Problem Definition
	3.1.1 Interdependent Network Model
	3.1.2 Cascading Failures Model
	3.1.3 Problem Definition

	3.2 Computational Complexity
	3.3 Greedy Framework for IPND Problem
	3.3.1 Maximum Cascading (Max-Cas) Algorithm
	3.3.2 Iterative Interdependent Centrality (IIC) Algorithm
	3.3.2.1 Updating function
	3.3.2.2 Convergence

	3.3.3 Hybrid Algorithm

	3.4 Experimental Evaluation
	3.4.1 Dataset and Metric
	3.4.2 Performance of Proposed Algorithms
	3.4.3 Vulnerability Assessment of Interdependent Systems
	3.4.3.1 Different coupled communication networks
	3.4.3.2 Disruptor threshold
	3.4.3.3 Different coupling schemes

	3.5 RPDCC / RNDCC Coupling Schemes
	3.6 Related Works
	3.7 Summary

	4 INFLUENCE DIFFUSION IN MULTIPLE ONLINE SOCIAL NETWORKS
	4.1 Network Model and Problem Definition
	4.1.1 Graph Notations
	4.1.2 Influence Propagation Model
	4.1.3 Problem Definition

	4.2 Network Alignment
	4.3 Lossless Coupling Schemes
	4.3.1 Clique Lossless Coupling Scheme
	4.3.2 Star Lossless Coupling Scheme

	4.4 Lossy Coupling Schemes
	4.5 Influence Relay
	4.6 Experimental Evaluation
	4.6.1 Datasets
	4.6.2 Comparison of Coupling Schemes
	4.6.3 Benefits of Coupled Network
	4.6.4 Bias in Selecting Seed Nodes

	4.7 Extensions to Other Cascading Models
	4.8 Summary

	5 CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

	1 REPORT DATE DDMMYYYY: 00-11-2015
	2 REPORT TYPE: Technical
	3 DATES COVERED From To: July 16, 2009 - August 31, 2014
	4 TITLE AND SUBTITLE: Combating Weapons of Mass Destruction: Models, Complexity, andAlgorithms in Complex Dynamic and Evolving Networks
	5a CONTRACT NUMBER: HDTRA1-09-1-0061
	5b GRANT NUMBER:
	5c PROGRAM ELEMENT NUMBER:
	6 AUTHORS: My Thai
	5d PROJECT NUMBER:
	5e TASK NUMBER:
	5f WORK UNIT NUMBER:
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES: University of Florida1 University of Florida Gainesville,FL 32611
	8 PERFORMING ORGANIZATION REPORT NUMBER:
	9 SPONSORING MONITORING AGENCY NAMES AND ADDRESSES: Defense Threat Reduction Agency8725 John J. Kingman RoadFort Belvoir, VA 22060
	10 SPONSORMONITORS ACRONYMS: DTRA
	11 SPONSORMONITORS REPORT NUMBERS: DTRA-TR-15-28
	12 DISTRIBUTION AVAILABILITY STATEMENT: Distribution Statement A. Approved for public release, distribution is unlimited.
	13 SUPPLEMENTARY NOTES:
	14 ABSTRACT: This project considers attack and defense problems on networks with respect to WMD attacks. It provides novel optimization models and solutions for network vulnerability assessment and defense measurement in the face of cascading failures and dynamic attacks. The critical infrastructures considered are complex systems which consist of multiple dynamic independent networks interacting to each other. The attacks we considered are dynamic, that is, another attack may be launched during the recovery.
	15 SUBJECT TERMS: WMD network node vulnerability terrorist network
	16 SECURITY CLASSIFICATION OF:
	a REPORT: Unclassified
	b ABSTRACT: Unclassified
	c THIS PAGE: Unclassified
	17 LIMITATION OF ABSTRACT: SAR
	18 NUMBER OF PAGES: 604
	19a NAME OF RESPONSIBLE PERSON: Allison Lyalikov
	19b TELEPHONE NUMBER include area code: 703-767-4663

